Home |
Headers act as filters
- Records
-
- Author
:
Howard Zhang, Douglas Morgan, Gerald Cecil, Adam Burkholder, Nicole Ramocki, Brooks Scull and P. Kay Lund - Title
:
- Type
:
Journal Article - Year
:
2008 - Publication
:
Gastrointestinal Endoscopy - Products
:
- Volume
:
68 - Issue
:
3 - Page Numbers
:
N/A - Research Area : Physiology
- Keywords
:
in vivo imaging; ProSense; GI imaging - Abstract
:
N/A - URL
:
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WFY-4SJR2BD-3&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=e919bce5b5a6515cb2c2dcfa6154d017 - Call Number
:
PKI @ sarah.piper @ - Serial
:
4541
- Author
-
- Author
:
Mook-Kanamori, B. B.; Rouse, M. S.; Kang, C. I.; Beek, D. van de; Steckelberg, J. M.; Patel, R. - Title
:
- Type
:
Journal Article - Year
:
2009 - Publication
:
BMC Infect Dis - Products
:
- Volume
:
9 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
IVIS, Xenogen, Xen10 - Abstract
:
N/A - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/19405978 - Call Number
:
141313 - Serial
:
5831
- Author
-
- Author
:
Daugimont, L.; Vandermeulen, G.; Defresne, F.; Bouzin, C.; Mir, L. M.; Bouquet, C.; Feron, O.; Preat, V. - Title
:
- Type
:
Journal Article - Year
:
2011 - Publication
:
Eur J Pharm Biopharm - Products
:
- Volume
:
78 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
B16-F10-luc-G5, B16F10-luc-G5, B16-F10-luc, B16F10-luc, IVIS - Abstract
:
BACKGROUND: Despite the discovery of novel inhibitors of tumor angiogenesis, protein-based antiangiogenic cancer therapy suffers some limitations that antiangiogenic gene therapy could overcome. We investigated whether intra-tumoral electrotransfer of three angiogenic plasmids could inhibit tumor growth and metastasis. METHODS: Plasmids encoding recombinant disintegrin domain of ADAM-15 (RDD), thrombospondin 1 (TSP-1), and the soluble isoform of the VEGF receptor 1 (sFlt-1) were injected into B16F10 melanoma-bearing C57BL/6 mice followed by electroporation. Tumor volume was measured daily using a digital caliper. Metastasis was monitored by in vivo bioluminescence after surgical removal of the primary luciferase-encoding B16F10 tumor 5 days after intra-tumoral electrotransfer. Markers of vascularization and cell proliferation were quantified by immunohistochemistry. RESULTS: Intra-tumoral electrotransfer of the antiangiogenic plasmids induced a significant inhibition of tumor growth, doubling of mean survival time and long-term survivors ( approximately 40% vs 0% in control). When the tumor was removed by surgery after intra-tumoral plasmid electrotransfer, a significant decrease in tumor metastasis was observed leading to long-term tumor-free survival especially after treatment with pRDD plasmid (84% vs 0% in control). Unlike pTSP-1 and psFlt-1, pRDD significantly decreased cell proliferation in B16F10 primary tumors which express alphavbeta3 and alpha5beta1 integrins. No effect of antiangiogenic plasmid electrotransfer on normal skin blood flow was detected. CONCLUSION: The intra-tumoral electrotransfer of the three antiangiogenic plasmids is a promising method for the treatment of melanoma. The plasmid encoding RDD seems to be particularly effective due to its direct antitumoral activity combined with angiogenesis suppression, and its marked inhibition of metastasis. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/21316447 - Call Number
:
PKI @ kd.modi @ 12 - Serial
:
10353
- Author
-
- Author
:
Zongjin Li, Kitchener D. Wilson, Bryan Smith, Daniel L. Kraft, Fangjun Jia, Mei Huang, Xiaoyan Xie, Robert C. Robbins, Sanjiv S. Gambhir, Irving L. Weissman and Joseph C. Wu - Title
:
- Type
:
Journal Article - Year
:
2009 - Publication
:
PLoS One - Products
:
- Volume
:
4 - Issue
:
12 - Page Numbers
:
N/A - Research Area : Cardiovascular Research
- Keywords
:
in vivo imaging; human embryonic stem cells; hESCs; endothelial cells; ECs; AngioSense - Abstract
:
Background: Differentiation of human embryonic stem cells into endothelial cells (hESC-ECs) has the potential to provide an unlimited source of cells for novel transplantation therapies of ischemic diseases by supporting angiogenesis and vasculogenesis. However, the endothelial differentiation efficiency of the conventional embryoid body (EB) method is low while the 2-dimensional method of co-culturing with mouse embryonic fibroblasts (MEFs) require animal product, both of which can limit the future clinical application of hESC-ECs. Moreover, to fully understand the beneficial effects of stem cell therapy, investigators must be able to track the functional biology and physiology of transplanted cells in living subjects over time.
Methodology: In this study, we developed an extracellular matrix (ECM) culture system for increasing endothelial differentiation and free from contaminating animal cells. We investigated the transcriptional changes that occur during endothelial differentiation of hESCs using whole genome microarray, and compared to human umbilical vein endothelial cells (HUVECs). We also showed functional vascular formation by hESC-ECs in a mouse dorsal window model. Moreover, our study is the first so far to transplant hESC-ECs in a myocardial infarction model and monitor cell fate using molecular imaging methods.
Conclusion: Taken together, we report a more efficient method for derivation of hESC-ECs that express appropriate patterns of endothelial genes, form functional vessels in vivo, and improve cardiac function. These studies suggest that hESC-ECs may provide a novel therapy for ischemic heart disease in the future. - URL
:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795856/?tool=pubmed - Call Number
:
PKI @ sarah.piper @ - Serial
:
4557
- Author
-
- Author
:
Hertlein, T.; Sturm, V.; Kircher, S.; Basse-Lusebrink, T.; Haddad, D.; Ohlsen, K.; Jakob, P. - Title
:
- Type
:
Journal Article - Year
:
2011 - Publication
:
PLoS One - Products
:
- Volume
:
6 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
IVIS, Xen29, Xen 29, Staphylococcus aureus Xen29, Animals; Female; Magnetic Resonance Imaging/*methods; Mice; Mice, Inbred BALB C; Staphylococcal Infections/*pathology; Staphylococcus aureus/*pathogenicity; Thigh/*microbiology/*pathology - Abstract
:
BACKGROUND: During the last years, (19)F-MRI and perfluorocarbon nanoemulsion (PFC) emerged as a powerful contrast agent based MRI methodology to track cells and to visualize inflammation. We applied this new modality to visualize deep tissue abscesses during acute and chronic phase of inflammation caused by Staphylococcus aureus infection. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, a murine thigh infection model was used to induce abscess formation and PFC or CLIO (cross linked ironoxides) was administered during acute or chronic phase of inflammation. 24 h after inoculation, the contrast agent accumulation was imaged at the site of infection by MRI. Measurements revealed a strong accumulation of PFC at the abscess rim at acute and chronic phase of infection. The pattern was similar to CLIO accumulation at chronic phase and formed a hollow sphere around the edema area. Histology revealed strong influx of neutrophils at the site of infection and to a smaller extend macrophages during acute phase and strong influx of macrophages at chronic phase of inflammation. CONCLUSION AND SIGNIFICANCE: We introduce (19)F-MRI in combination with PFC nanoemulsions as a new platform to visualize abscess formation in a murine thigh infection model of S. aureus. The possibility to track immune cells in vivo by this modality offers new opportunities to investigate host immune response, the efficacy of antibacterial therapies and the influence of virulence factors for pathogenesis. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/21455319 - Call Number
:
PKI @ kd.modi @ 2 - Serial
:
10451
- Author
-
- Author
:
Nakayama, H.; Kawase, T.; Okuda, K.; Wolff, L. F.; Yoshie, H. - Title
:
- Type
:
Journal Article - Year
:
2011 - Publication
:
Acta Radiol - Products
:
- Volume
:
52 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
OsteoSense,, Animals; Bone Neoplasms/*pathology/physiopathology; Calcification, Physiologic/*physiology; Diphosphonates/diagnostic use; Feasibility Studies; Inositol/analogs & derivatives/diagnostic use; Mice; Mice, Hairless; Osteosarcoma/*pathology/physiopathology; Radiopharmaceuticals/diagnostic use; Spectroscopy, Near-Infrared/*methods; Technetium Tc 99m Medronate/analogs & derivatives/diagnostic use; Transplantation, Heterologous - Abstract
:
BACKGROUND: In a previous study using a rodent osteosarcoma-grafted rat model, in which cell-dependent mineralization was previously demonstrated to proportionally increase with growth, we performed a quantitative analysis of mineral deposit formation using (99m)Tc-HMDP and found some weaknesses, such as longer acquisition time and narrower dynamic ranges (i.e. images easily saturated). The recently developed near-infrared (NIR) optical imaging technique is expected to non-invasively evaluate changes in living small animals in a quantitative manner. PURPOSE: To test the feasibility of NIR imaging with a dual-channel system as a better alternative for bone scintigraphy by quantitatively evaluating mineralization along with the growth of osteosarcoma lesions in a mouse-xenograft model. MATERIAL AND METHODS: The gross volume and mineralization of osteosarcoma lesions were evaluated in living mice simultaneously with dual-channels by NIR dye-labeled probes, 2-deoxyglucose (DG) and pamidronate (OS), respectively. To verify these quantitative data, retrieved osteosarcoma lesions were then subjected to ex-vivo imaging, weighing under wet conditions, microfocus-computed tomography (muCT) analysis, and histopathological examination. RESULTS: Because of less scattering and no anatomical overlapping, as generally shown, specific fluorescence signals targeted to the osteosarcoma lesions could be determined clearly by ex-vivo imaging. These data were well positively correlated with the in-vivo imaging data (r > 0.8, P < 0.02). Other good to excellent correlations (r > 0.8, P < 0.02) were observed between DG accumulation and tumor gross volume and between OS accumulation and mineralization volume. CONCLUSION: This in-vivo NIR imaging technique using DG and OS is sensitive to the level to simultaneously detect and quantitatively evaluate the growth and mineralization occuring in this type of osteosarcoma lesions of living mice without either invasion or sacrifice. By possible mutual complementation, this dual imaging system might be useful for accurate diagnosis even in the presence of overlapping tissues. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/21969703 - Call Number
:
PKI @ kd.modi @ 7 - Serial
:
10472
- Author
-
- Author
:
Tanaka, M.; Mroz, P.; Dai, T.; Huang, L.; Morimoto, Y.; Kinoshita, M.; Yoshihara, Y.; Nemoto, K.; Shinomiya, N.; Seki, S.; Hamblin, M. R. - Title
:
- Type
:
Journal Article - Year
:
2012 - Publication
:
PLoS One - Products
:
- Volume
:
7 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence, Animals; Arthritis, Infectious/*drug therapy/immunology/microbiology; *Immunity, Innate; Methicillin-Resistant Staphylococcus aureus/isolation & purification; Methylene Blue/therapeutic use; Mice; Neutrophils/*immunology; *Photochemotherapy; Photosensitizing Agents/therapeutic use - Abstract
:
BACKGROUND: Local microbial infections induced by multiple-drug-resistant bacteria in the orthopedic field can be intractable, therefore development of new therapeutic modalities is needed. Photodynamic therapy (PDT) is a promising alternative modality to antibiotics for intractable microbial infections, and we recently reported that PDT has the potential to accumulate neutrophils into the infected site which leads to resolution of the infection. PDT for cancer has long been known to be able to stimulate the innate and adaptive arms of the immune system. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, a murine methicillin-resistant Staphylococcus aureus (MRSA) arthritis model using bioluminescent MRSA and polystyrene microparticles was established, and both the therapeutic (Th-PDT) and preventive (Pre-PDT) effects of PDT using methylene blue as photosensitizer were examined. Although Th-PDT could not demonstrate direct bacterial killing, neutrophils were accumulated into the infectious joint space after PDT and MRSA arthritis was reduced. With the preconditioning Pre-PDT regimen, neutrophils were quickly accumulated into the joint immediately after bacterial inoculation and bacterial growth was suppressed and the establishment of infection was inhibited. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration of a protective innate immune response against a bacterial pathogen produced by PDT. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/22761911 - Call Number
:
PKI @ kd.modi @ 10 - Serial
:
10557
- Author
-
- Author
:
He, T.; Xue, Z.; Lu, K.; Valdivia y Alvarado, M.; Wong, K. K.; Xie, W.; Wong, S. T. - Title
:
- Type
:
Journal Article - Year
:
2012 - Publication
:
Comput Med Imaging Graph - Products
:
- Volume
:
36 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
N/A - Abstract
:
BACKGROUND: Lung cancer is the leading cause of cancer-related death in the United States, with more than half of the cancers are located peripherally. Computed tomography (CT) has been utilized in the last decade to detect early peripheral lung cancer. However, due to the high false diagnosis rate of CT, further biopsy is often necessary to confirm cancerous cases. This renders intervention for peripheral lung nodules (especially for small peripheral lung cancer) difficult and time-consuming, and it is highly desirable to develop new, on-the-spot earlier lung cancer diagnosis and treatment strategies. PURPOSE: The objective of this study is to develop a minimally invasive multimodality image-guided (MIMIG) intervention system to detect lesions, confirm small peripheral lung cancer, and potentially guide on-the-spot treatment at an early stage. Accurate image guidance and real-time optical imaging of nodules are thus the key techniques to be explored in this work. METHODS: The MIMIG system uses CT images and electromagnetic (EM) tracking to help interventional radiologists target the lesion efficiently. After targeting the lesion, a fiber-optic probe coupled with optical molecular imaging contrast agents is used to confirm the existence of cancerous tissues on-site at microscopic resolution. Using the software developed, pulmonary vessels, airways, and nodules can be segmented and visualized for surgical planning; the segmented results are then transformed onto the intra-procedural CT for interventional guidance using EM tracking. Endomicroscopy through a fiber-optic probe is then performed to visualize tumor tissues. Experiments using IntegriSense 680 fluorescent contrast agent labeling alphavbeta3 integrin were carried out for rabbit lung cancer models. Confirmed cancers could then be treated on-the-spot using radio-frequency ablation (RFA). RESULTS: The prototype system is evaluated using the rabbit VX2 lung cancer model to evaluate the targeting accuracy, guidance efficiency, and performance of molecular imaging. Using this system, we achieved an average targeting accuracy of 3.04 mm, and the IntegriSense signals within the VX2 tumors were found to be at least two-fold higher than those of normal tissues. The results demonstrate great potential for applying the system in human trials in the future if an optical molecular imaging agent is approved by the Food and Drug Administration (FDA). CONCLUSIONS: The MIMIG system was developed for on-the-spot interventional diagnosis of peripheral lung tumors by combining image-guidance and molecular imaging. The system can be potentially applied to human trials on diagnosing and treating earlier stage lung cancer. For current clinical applications, where a biopsy is unavoidable, the MIMIG system without contrast agents could be used for biopsy guidance to improve the accuracy and efficiency. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/22483054 - Call Number
:
PKI @ kd.modi @ 9 - Serial
:
10364
- Author
-
- Author
:
Bratlie, K. M.; Dang, T. T.; Lyle, S.; Nahrendorf, M.; Weissleder, R.; Langer, R.; Anderson, D. G. - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
PLoS One - Products
:
- Volume
:
5 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Prosense, IVIS, Animals; Biocompatible Materials/*diagnostic use; Diagnostic Imaging/*methods; *Fluorescence; Macrophage Activation; Materials Testing/*methods; Mice; Models, Animal; Peptide Hydrolases/metabolism; Phagocytes - Abstract
:
BACKGROUND: Many materials are unsuitable for medical use because of poor biocompatibility. Recently, advances in the high throughput synthesis of biomaterials has significantly increased the number of potential biomaterials, however current biocompatibility analysis methods are slow and require histological analysis. METHODOLOGY/PRINCIPAL FINDINGS: Here we develop rapid, non-invasive methods for in vivo quantification of the inflammatory response to implanted biomaterials. Materials were placed subcutaneously in an array format and monitored for host responses as per ISO 10993-6: 2001. Host cell activity in response to these materials was imaged kinetically, in vivo using fluorescent whole animal imaging. Data captured using whole animal imaging displayed similar temporal trends in cellular recruitment of phagocytes to the biomaterials compared to histological analysis. CONCLUSIONS/SIGNIFICANCE: Histological analysis similarity validates this technique as a novel, rapid approach for screening biocompatibility of implanted materials. Through this technique there exists the possibility to rapidly screen large libraries of polymers in vivo. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/20386609 - Call Number
:
PKI @ kd.modi @ 5 - Serial
:
10427
- Author
-
- Author
:
Rocks, N.; Bekaert, S.; Coia, I.; Paulissen, G.; Gueders, M.; Evrard, B.; Van Heugen, J. C.; Chiap, P.; Foidart, J. M.; Noel, A.; Cataldo, D. - Title
:
- Type
:
Journal Article - Year
:
2012 - Publication
:
Br J Cancer - Products
:
- Volume
:
107 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
LL/2-luc-M38, LL/2-luc, Lewis Lung Carcinoma, IVIS - Abstract
:
BACKGROUND: Overall clinical outcome for advanced lung cancer remains very disappointing despite recent advances in treatment. Curcumin has been reported as potentially active against cancer. METHODS: Owing to poor curcumin solubility, we have used cyclodextrins (CD) as an excipient allowing a considerable increase of aqueous solubility and bioavailability of curcumin. The effects of solubilised curcumin have been evaluated in cell cultures as well as in an in vivo orthotopic lung tumour mouse model. RESULTS: Cell proliferation was reduced while apoptosis rates were increased when lung epithelial tumour cells were cultured in the presence of curcumin-CD complexes. For in vivo experiments, cells were grafted into lungs of C57Bl/6 mice treated by an oral administration of a non-soluble form of curcumin, CDs alone or curcumin-CD complexes, combined or not with gemcitabine. The size of orthotopically implanted lung tumours was reduced upon curcumin complex administration as compared with treatments with placebo or non-solubilised curcumin. Moreover, curcumin potentiated the gemcitabine-mediated antitumour effects. CONCLUSION: Our data demonstrate that curcumin, when given orally in a CD-solubilised form, reduces lung tumour size in vivo. In vitro experiments show impaired tumour cell proliferation and increased cell apoptosis. Moreover, our data underline a potential additive effect of curcumin with gemcitabine thus providing an efficient therapeutic option for antilung cancer therapy. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/22929882 - Call Number
:
PKI @ kd.modi @ 3 - Serial
:
10545
- Author