Home |
Headers act as filters
- Records
-
- Author
:
Barman, T. K.; Rao, M.; Bhati, A.; Kishore, K.; Shukla, G.; Kumar, M.; Mathur, T.; Pandya, M.; Upadhyay, D. J. - Title
:
- Type
:
Journal Article - Year
:
2011 - Publication
:
Indian J Med Res - Products
:
- Volume
:
134 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Xen10, Xen 10, Streptococcus pnuemoniae Xen10, IVIS, - Abstract
:
Background & objectives: In vivo imaging system has contributed significantly to the understanding of bacterial infection and efficacy of drugs in animal model. We report five rapid, reproducible, and non invasive murine pulmonary infection, skin and soft tissue infection, sepsis, and meningitis models using Xenogen bioluminescent strains and specialized in vivo imaging system (IVIS). Methods: The progression of bacterial infection in different target organs was evaluated by the photon intensity and target organ bacterial counts. Genetically engineered bioluminescent bacterial strains viz. Staphylococcus aureus Xen 8.1, 29 and 31; Streptococcus pneumoniae Xen 9 and 10 and Pseudomonas aeruginosa Xen-5 were used to induce different target organs infection and were validated with commercially available antibiotics. Results: The lower limit of detection of colony forming unit (cfu) was 1.7-log10 whereas the lower limit of detection of relative light unit (RLU) was 4.2-log10 . Recovery of live bacteria from different target organs showed that the bioluminescent signal correlated to the live bacterial count. Interpretation & conclusions: This study demonstrated the real time monitoring and non-invasive analysis of progression of infection and pharmacological efficacy of drugs. These models may be useful for pre-clinical discovery of new antibiotics. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/22199109 - Call Number
:
PKI @ kd.modi @ 3 - Serial
:
10399
- Author
-
- Author
:
N/A - Title
:
- Type
:
Journal Article - Year
:
2009 - Publication
:
PloS one - Products
:
- Volume
:
4 - Issue
:
3 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Antineoplastic Agents; Bioware; Breast Neoplasms; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Diphosphonates; Esterification; Female; Humans; Hydrophobic and Hydrophilic Interactions; MDA-MB-231-D3H2LN cells; Neoplasm Metastasis; Structure-Activity Relationship - Abstract
:
BACKGROUND Although there was growing evidence in the potential use of Bisphosphonates (BPs) in cancer therapy, their strong osseous affinities that contrast their poor soft tissue uptake limited their use. Here, we developed a new strategy to overcome BPs hydrophilicity by masking the phosphonic acid through organic protecting groups and introducing hydrophobic functions in the side chain. METHODOLOGY/PRINCIPAL FINDINGS We synthesized non-nitrogen BPs (non N-BPs) containing bromobenzyl group (BP7033Br) in their side chain that were symmetrically esterified with hydrophobic 4-methoxphenyl (BP7033BrALK) and assessed their effects on breast cancer estrogen-responsive cells (T47D, MCF-7) as well as on non responsive ones (SKBR3, MDA-MB-231 and its highly metastatic derived D3H2LN subclone). BP7033Br ALK was more efficient in inhibiting tumor cell proliferation, migration and survival when compared to BP7033Br. Although both compounds inhibited tumor growth without side effects, only BP7033Br ALK abrogated tumor angiogenesis and D3H2LN cells-induced metastases formation. CONCLUSION/SIGNIFICANCE Taken together these data suggest the potential therapeutic use of this new class of esterified Bisphosphonates (BPs) in the treatment of tumor progression and metastasis without toxic adverse effects. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/19262688 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8958
- Author
-
- Author
:
Luis Rodriguez-Menocal1, Yuntao Wei1, Si M. Pham, Melissa St-Pierre, Sen Li, Keith Webster, Pascal Goldschmidt-Clermont and Roberto I. Vazquez-Padron - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
Atherosclerosis - Products
:
- Volume
:
209 - Issue
:
2 - Page Numbers
:
N/A - Research Area : Cardiovascular Research
- Keywords
:
In-stent restenosis; Mouse; Stent; Animal model; in vivo imaging; MMPSense FAST; FMT - Abstract
:
Background and aims: In-stent restenosis (ISR) is the major complication that occurs after percutaneous coronary interventions to facilitate coronary revascularization. Herein we described a simple and cost-effective model, which reproduces important features of ISR in the mouse.
Methods and results: Microvascular bare metal stents were successfully implanted in the abdominal aorta of atherosclerotic ApoE-null mice. Patency of implanted stents was interrogated using ultrasound biomicroscopy. Aortas were harvested at different time points after implantation and processed for histopathological analysis. Thrombus formation was histologically detected after 1 day. Leukocyte adherence and infiltration were evident after 7 days and decreased thereafter. Neointimal formation, neointimal thickness and luminal stenosis simultaneously increased up to 28 days after stent implantation. Using multichannel fluorescence molecular tomography (FMT) for spatiotemporal resolution of MMP activities, we observed that MMP activity in the stented aorta of Apo-E null mice was 2-fold higher than that of wild-type mice. Finally, we compared neointimal formation in response to stenting in two genetically different mouse strains. In-stent neointimas in FVB/NJ mice were 2-fold thicker than in C57BL/6J mice (p=0.002).
Conclusion: We have developed a model that can take advantage of the multiple genetic resources available for the mouse to study the mechanisms of in-stent restenosis. - URL
:
http://www.atherosclerosis-journal.com/article/S0021-9150(09)00825-9/abstract - Call Number
:
PKI @ sarah.piper @ - Serial
:
4555
- Author
-
- Author
:
N/A - Title
:
- Type
:
Journal Article - Year
:
2007 - Publication
:
Lasers in surgery and medicine - Products
:
- Volume
:
39 - Issue
:
1 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Anti-Infective Agents; Biofilms; Dental Pulp Cavity; Dental Pulp Diseases; Endodontics; Humans; Luminescence; Photochemotherapy; Polyethyleneimine; Porphyrins; Proteus Infections; Proteus mirabilis; Pseudomonas aeruginosa; Pseudomonas Infections; Xen5; Xen44 - Abstract
:
BACKGROUND AND OBJECTIVE To compare the effectiveness of antimicrobial photodynamic therapy (PDT), standard endodontic treatment and the combined treatment to eliminate bacterial biofilms present in infected root canals. STUDY DESIGN/MATERIALS AND METHODS Ten single-rooted freshly extracted human teeth were inoculated with stable bioluminescent Gram-negative bacteria, Proteus mirabilis and Pseudomonas aeruginosa to form 3-day biofilms in prepared root canals. Bioluminescence imaging was used to serially quantify bacterial burdens. PDT employed a conjugate between polyethylenimine and chlorin(e6) as the photosensitizer (PS) and 660-nm diode laser light delivered into the root canal via a 200-micro fiber, and this was compared and combined with standard endodontic treatment using mechanical debridement and antiseptic irrigation. RESULTS Endodontic therapy alone reduced bacterial bioluminescence by 90% while PDT alone reduced bioluminescence by 95%. The combination reduced bioluminescence by >98%, and importantly the bacterial regrowth observed 24 hours after treatment was much less for the combination (P<0.0005) than for either single treatment. CONCLUSIONS Bioluminescence imaging is an efficient way to monitor endodontic therapy. Antimicrobial PDT may have a role to play in optimized endodontic therapy. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/17066481 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
9997
- Author
-
- Author
:
Dai, T.; Tegos, G. P.; Zhiyentayev, T.; Mylonakis, E.; Hamblin, M. R. - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
Lasers Surg Med - Products
:
- Volume
:
42 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence, Administration, Cutaneous; Animals; Disease Models, Animal; Female; *Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Inbred BALB C; Photobleaching; *Photochemotherapy; Polyethyleneimine/administration & dosage; Porphyrins/*administration & dosage; Radiation-Sensitizing Agents/*administration & dosage; Staphylococcal Skin Infections/etiology/pathology/*therapy; Wound Infection/microbiology/pathology/*therapy - Abstract
:
BACKGROUND AND OBJECTIVE: Methicillin-resistant Staphylococcus aureus (MRSA) skin infections are now known to be a common and important problem in the Unites States. The objective of this study was to investigate the efficacy of photodynamic therapy (PDT) for the treatment of MRSA infection in skin abrasion wounds using a mouse model. STUDY DESIGN/MATERIALS AND METHODS: A mouse model of skin abrasion wound infected with MRSA was developed. Bioluminescent strain of MRSA, a derivative of ATCC 33591, was used to allow the real-time monitoring of the extent of infection in mouse wounds. PDT was performed with the combination of a polyethylenimine (PEI)-ce6 photosensitizer (PS) and non-coherent red light. In vivo fluorescence imaging was carried out to evaluate the effect of photobleaching of PS during PDT. RESULTS: In vivo fluorescence imaging of conjugate PEI-ce6 applied in mice indicated the photobleaching effect of the PS during PDT. PDT induced on average 2.7 log(10) of inactivation of MRSA as judged by loss of bioluminescence in mouse skin abrasion wounds and accelerated the wound healing on average by 8.6 days in comparison to the untreated infected wounds. Photobleaching of PS in the wound was overcome by adding the PS solution in aliquots. CONCLUSION: PDT may represent an alternative approach for the treatment of MRSA skin infections. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/20077489 - Call Number
:
PKI @ kd.modi @ 3 - Serial
:
10553
- Author
-
- Author
:
Dai, T.; Tegos, G. P.; Zhiyentayev, T.; Mylonakis, E.; Hamblin, M. R. - Title
:
Photodynamic Therapy for Methicillin-Resistant Staphylococcus aureus Infection in a Mouse Skin Abrasion Model - Type
:
Journal Article - Year
:
2010 - Publication
:
Lasers in Surgery and Medicine - Products
:
- Volume
:
42 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
IVIS, Xenogen, Xen30 - Abstract
:
N/A - URL
:
N/A - Call Number
:
137212 - Serial
:
7293
- Author
-
- Author
:
Keereweer, S.; Mol, I. M.; Kerrebijn, J. D.; Van Driel, P. B.; Xie, B.; Baatenburg de Jong, R. J.; Vahrmeijer, A. L.; Lowik, C. W. - Title
:
- Type
:
Journal Article - Year
:
2012 - Publication
:
J Surg Oncol - Products
:
- Volume
:
105 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
IntegriSense, Animals; Carcinoma, Squamous Cell/*pathology/surgery; Fluorescent Dyes/*diagnostic use; Humans; Integrin alphaVbeta3/*metabolism; Mice; Mice, Inbred BALB C; Mouth Neoplasms/*pathology/surgery; Spectroscopy, Near-Infrared; *Surgery, Computer-Assisted - Abstract
:
BACKGROUND AND OBJECTIVES: Near-infrared (NIR) fluorescence optical imaging is a promising technique to assess the tumor margins during cancer surgery. This technique requires targeting by specific fluorescence agents to differentiate tumor from normal surrounding tissue. We assessed the feasibility of cancer detection using NIR fluorescence agents that target either alphavbeta3 integrins or the enhanced permeability and retention (EPR) effect in an orthotopic mouse model of oral cancer. METHODS: Binding of the integrin-targeted agent to tumor cells was assessed in vitro. Oral cancer was induced in 6 BALB/c nu/nu mice by submucosal inoculation of human OSC19-luc cells into the tongue. Tumor growth was followed with bioluminescence imaging. A combination of agents targeting integrins or EPR effect was injected followed by fluorescence imaging in vivo and ex vivo after resection of the tongues. RESULTS: Oral cancer was clearly demarcated in vitro; in vivo; and on histological analysis with sufficient tumor-to-background ratios of the contrast agents. CONCLUSION: This study demonstrates the feasibility of optical imaging of oral squamous cell carcinoma based on targeting of alphavbeta3 integrins and the EPR effect. Once these NIR fluorescence agents become available for clinical testing, optical image-guided surgery could reduce residual disease after oral cancer surgery. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/21952950 - Call Number
:
PKI @ kd.modi @ 28 - Serial
:
10368
- Author
-
- Author
:
Scatena, Caroline D; Hepner, Mischa A; Oei, Yoko A; Dusich, Joan M; Yu, Shang-Fan; Purchio, Tony; Contag, Pamela R; Jenkins, Darlene E - Title
:
- Type
:
Journal Article - Year
:
2004 - Publication
:
The Prostate - Products
:
- Volume
:
59 - Issue
:
3 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals; Bioware; Disease Models, Animal; Humans; LnCaP-luc cells; Luciferases; Luminescent Measurements; Male; Mice; Mice, SCID; Neoplasm Metastasis; Phenotype; Plasmids; Prostatic Neoplasms; Transfection; Transplantation, Heterologous; Tumor Cells, Cultured - Abstract
:
BACKGROUND Animal experiments examining hormone-sensitive metastatic prostate cancer using the human LNCaP cell line have been limited to endpoint analyses. To permit longitudinal studies, we generated a luciferase-expressing cell line and used bioluminescent imaging (BLI) to non-invasively monitor the in vivo growth of primary LNCaP tumors and metastasis. METHODS LNCaP.FGC cells were transfected to constitutively express firefly luciferase. LNCaP-luc-M6 cells were tested for bioluminescent signal intensity and hormone responsiveness in vitro. The cells were implanted in subcutaneous and orthotopic sites in SCID-bg mice and imaged over time. RESULTS The LNCaP-luc-M6 cells formed subcutaneous and orthotopic tumors in SCID-bg mice, and nearly all tumor-bearing animals developed pulmonary metastases. Early detection and temporal growth of primary tumors and metastatic lesions was successfully monitored by BLI. CONCLUSIONS The LNCaP-luc-M6 cell line is a bioluminescent, hormone-sensitive prostate cancer cell line applicable for BLI studies to non-invasively monitor subcutaneous and orthotopic prostate tumor growth and metastasis in vivo. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/15042605 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
9015
- Author
-
- Author
:
Sharma, Prashant K; Engels, Eefje; Van Oeveren, Wim; Ploeg, Rutger J; van Henny der Mei, C; Busscher, Henk J; Van Dam, Gooitzen M; Rakhorst, Gerhard - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
Surgery - Products
:
- Volume
:
147 - Issue
:
1 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals; Bacteroides fragilis; Diagnostic Imaging; Disease Progression; Escherichia coli; Luciferases, Bacterial; Luminescent Agents; Male; Peritoneal Lavage; Peritonitis; Rats; Rats, Wistar; Xen14 - Abstract
:
BACKGROUND Bacterial peritonitis is a life-threatening abdominal infection associated with high morbidity and mortality. The rat is a popular animal model for studying peritonitis and its treatment, but longitudinal monitoring of the progression of peritonitis in live animals has been impossible until now and thus required a large number of animals. Our objective was to develop a noninvasive in vivo imaging technique to monitor the spatiotemporal spread of bacterial peritonitis. METHODS Peritonitis was induced in 8 immunocompetent male Wistar rats by placing fibrin clots containing 5x10(8) cells of both Bacteroides fragilis (American Type Tissue Culture [ATCC)] 25,285 and bioluminescent Escherichia coli Xen14. After 1 or 2 days, infected clots were removed and open abdomen lavage was performed. In vivo bioluminescent imaging was used to monitor the spread of peritonitis. RESULTS Bioluminescent in vivo imaging showed an increase in the area of spread, and the number of E. coli tripled into the rat's abdominal cavity on day 1 after clot insertion; however, on day 2, encapsulation of the clot confined bacterial spread. Bioluminescent E. coli respread over the peritoneal cavity after lavage; within 10 days, however, in vivo imaging showed a decrease of 3-4 orders of magnitude in bacterial load. CONCLUSION Bioluminescent in vivo imaging can be effectively used to monitor the spatiotemporal behavior of the peritonitis during 3 different stages of the disease process: initiation, treatment, and follow-up. Imaging allows researchers to repeatedly image the same animal, thereby reducing variability and providing greater confidence in determining treatment efficacies for therapeutic interventions using a small number of animals. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/19733882 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
10005
- Author
-
- Author
:
Ketonis, Constantinos; Barr, Stephanie; Adams, Christopher S; Hickok, Noreen J; Parvizi, Javad - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
Clinical orthopaedics and related research - Products
:
- Volume
:
468 - Issue
:
8 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Anti-Bacterial Agents; Biofilms; Bioware; Bone Substitutes; Bone Transplantation; Prostheses and Implants; Prosthesis-Related Infections; Staphylococcal Infections; Staphylococcus aureus; Transplantation, Homologous; Vancomycin; Xen36 - Abstract
:
BACKGROUND Bone grafts are frequently used to supplement bone stock and to establish structural stability. However, graft-associated infection represents a challenging complication leading to increased patient morbidity and healthcare costs. QUESTIONS/PURPOSES We therefore designed this study to (1) determine if increasing initial S. aureus inoculation of bone allograft results in a proportionate increase in colonization; (2) assess if antibiotics decrease colonization and if antibiotic tethering to allograft alters its ability to prevent bacterial colonization; and (3) determine if covalent modification alters the allograft topography or its biological properties. METHODS Allograft bone and vancomycin-modified bone (VAN-bone) was challenged with different doses of S. aureus for times out to 24 hours in the presence or absence of solution vancomycin. Bacterial colonization was assessed by fluorescence, scanning electron microscopy (SEM), and by direct colony counting. Cell density and distribution of osteoblast-like cells on control and modified allograft were then compared. RESULTS Bacterial attachment was apparent within 6 hours with colonization and biofilm formation increasing with time and dose. Solution vancomycin failed to prevent bacterial attachment whereas VAN-bone successfully resisted colonization. The allograft modification did not affect the attachment and distribution of osteoblast-like cells. CONCLUSIONS Allograft bone was readily colonized by S. aureus and covered by a biofilm with especially florid growth in natural topographic niches. Using a novel covalent modification, allograft bone was able to resist colonization by organisms while retaining the ability to allow adhesion of osteoblastic cells. CLINICAL RELEVANCE Generation of allograft bone that can resist infection in vivo would be important in addressing one of the most challenging problems associated with the use of allograft, namely infection. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/20361282 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
9981
- Author