1. Resources
  2. Citations Library

Headers act as filters

  • Records
      1. Author :
        Dernell, William S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        N/A
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        *Breast Cancer; *Chemotherapy; *Genes; *Luciferase; Anatomy and Physiology; Biochemistry; Bioware; Cells(Biology); Diseases; Drugs; Efficacy; Gel Polymers; Gels; Growth(Physiology); Humans; Image Processing; In Vitro Analysis.; In Vivo Analysis; Luciferase Genes; Medicine and Medical Research; Metastasis; Mouse Models; Paclitaxel Sensitivity; Poloxamer Polymers; Polymers; Preclinical Evaluations; surgery; Synergism; Toxicity; Tumor Cell Lines
      12. Abstract :
        This project evaluated paclitaxel chemotherapy delivery from a gel polymer system placed into a wound bed following conservative (marginal) surgical removal of human breast cancers grown in nude mice. This delivery method was shown to control local tumor disease as well as assist in control of systemic metastasis. We established 5 human breast cancer cell lines within our laboratory. We elected purchase and implement a unique (luciferase) imaging system which allows in vivo imaging of tumor growth and metastasis (and subsequently decrease animal use). Tumor cell lines were transfected with the luciferase gene. In vitro testing of cell lines established paclitaxel sensitivity and showed a synergistic effect of delivering paclitaxel by the poloxamer polymer, especially for the chemotherapy resistant cell line, MCF-7-ADR. We completed the simultaneous evaluation of local and systemic toxicity, local, regional and systemic distribution and local and systemic efficacy of locally delivered paclitaxel chemotherapy following tumor removal using the MCF-7-ADR cell line in nude mice. Intracavitary administration of taxol in poloxamer was well tolerated (locally and systemically) afld resulted in significantly improved control of local tumor regrowth and comparable control of metastasis following marginal tumor removal as compared to intravenous paclitaxel (parent drug) . Sustained drug levels (from polymer delivery) were seen in plasma and liver tissue at 60 days.
      13. URL :
        http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA437225
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8994
      1. Author :
        Sjollema, Jelmer; Sharma, Prashant K; Dijkstra, Rene J B; van Dam, Gooitzen M; van der Mei, Henny C; Engelsman, Anton F; Busscher, Henk J
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Biomaterials
      6. Products :
      7. Volume :
        31
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Infective Agents; Bacteria; Bacterial Infections; Biocompatible Materials; Biofilms; Bioware; Coated Materials, Biocompatible; Fluorescent Dyes; Humans; Image Enhancement; Light; Luminescent Measurements; Luminescent Proteins; Microscopy, Fluorescence; Prosthesis-Related Infections; Sensitivity and Specificity; Xen29
      12. Abstract :
        This review presents the current state of Bioluminescence and Fluorescent Imaging technologies (BLI and FLI) as applied to Biomaterial-Associated Infections (BAI). BLI offers the opportunity to observe the in vivo course of BAI in small animals without the need to sacrifice animals at different time points after the onset of infection. BLI is highly dependent on the bacterial cell metabolism which makes BLI a strong reporter of viable bacterial presence. Fluorescent sources are generally more stable than bioluminescent ones and specifically targeted, which renders the combination of BLI and FLI a promising tool for imaging BAI. The sensitivity and spatial resolution of both imaging tools are, however, dependent on the imaging system used and the tissue characteristics, which makes the interpretation of images, in terms of the location and shape of the illuminating source, difficult. Tomographic reconstruction of the luminescent source is possible in the most modern instruments, enabling exact localization of a colonized implant material, spreading of infecting organisms in surrounding tissue and immunological tissue reactions. BLI studies on BAI have successfully distinguished between different biomaterials with respect to the development and clearance of BAI in vivo, simultaneously reducing animal use and experimental variation. It is anticipated that bio-optical imaging will become an indispensable technology for the in vivo evaluation of antimicrobial coatings.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19969345
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9038
      1. Author :
        Sjollema, J.; Sharma, P. K.; Dijkstra, R. J.; van Dam, G. M.; van der Mei, H. C.; Engelsman, A. F.; Busscher, H. J.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Biomaterials
      6. Products :
      7. Volume :
        31
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen14, Xen 14, E. coli Xen14, IVIS, Animals; Anti-Infective Agents/*pharmacology/therapeutic use; Bacteria/*drug effects/pathogenicity; Bacterial Infections/drug therapy/*etiology; Biocompatible Materials/*adverse effects/chemistry; Biofilms; Coated Materials, Biocompatible/chemistry; Fluorescent Dyes/chemistry/metabolism; Humans; Image Enhancement/methods; Light; Luminescent Measurements/instrumentation/*methods; Luminescent Proteins/metabolism; Microscopy, Fluorescence/instrumentation/*methods; Prosthesis-Related Infections/drug therapy/microbiology; Sensitivity and Specificity
      12. Abstract :
        This review presents the current state of Bioluminescence and Fluorescent Imaging technologies (BLI and FLI) as applied to Biomaterial-Associated Infections (BAI). BLI offers the opportunity to observe the in vivo course of BAI in small animals without the need to sacrifice animals at different time points after the onset of infection. BLI is highly dependent on the bacterial cell metabolism which makes BLI a strong reporter of viable bacterial presence. Fluorescent sources are generally more stable than bioluminescent ones and specifically targeted, which renders the combination of BLI and FLI a promising tool for imaging BAI. The sensitivity and spatial resolution of both imaging tools are, however, dependent on the imaging system used and the tissue characteristics, which makes the interpretation of images, in terms of the location and shape of the illuminating source, difficult. Tomographic reconstruction of the luminescent source is possible in the most modern instruments, enabling exact localization of a colonized implant material, spreading of infecting organisms in surrounding tissue and immunological tissue reactions. BLI studies on BAI have successfully distinguished between different biomaterials with respect to the development and clearance of BAI in vivo, simultaneously reducing animal use and experimental variation. It is anticipated that bio-optical imaging will become an indispensable technology for the in vivo evaluation of antimicrobial coatings.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19969345
      14. Call Number :
        PKI @ kd.modi @ 8
      15. Serial :
        10397
      1. Author :
        Xing, Yifei; Lu, Xiaochun; Pua, Eric C; Zhong, Pei
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Biochemical and biophysical research communications
      6. Products :
      7. Volume :
        375
      8. Issue :
        4
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; B16-F10-luc-G5 cells; Bioware; Cytotoxicity Tests, Immunologic; Female; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Neoplasm Metastasis; Ultrasonic Therapy
      12. Abstract :
        This study aims to assess the risk of high intensity focused ultrasound (HIFU) therapy on the incidence of distant metastases and to investigate its association with HIFU-elicited anti-tumor immunity in a murine melanoma (B16-F10) model. Tumor-bearing legs were amputated immediately after or 2 days following HIFU treatment to differentiate the contribution of the elicited anti-tumor immunity. In mice undergoing amputation immediately after mechanical, thermal, or no HIFU treatment, metastasis rates were comparable (18.8%, 13.3%, and 12.5%). In contrast, with a 2-day delay in amputation, the corresponding metastasis rates were 6.7%, 11.8%, and 40%, respectively. Animal survival rate was higher and CTL activity was enhanced in the HIFU treatment groups. Altogether, our results suggest that HIFU treatment does not increase the risk of distant metastasis. Instead, HIFU treatment can elicit an anti-tumor immune response that may be harnessed to improve the overall effectiveness and quality of cancer therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18727919
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8998
      1. Author :
        Tai, Chien-Hsuan; Hsiung, Suz-Kai; Chen, Chih-Yuan; Tsai, Mei-Lin; Lee, Gwo-Bin
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Biomedical microdevices
      6. Products :
      7. Volume :
        9
      8. Issue :
        4
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        A549-luc-C8 cells; Bioware; Cell Line, Tumor; Cell Nucleus; Cell Separation; Electrophoresis; Humans; Microfluidic Analytical Techniques
      12. Abstract :
        This study reports a new biochip capable of cell separation and nucleus collection utilizing dielectrophoresis (DEP) forces in a microfluidic system comprising of micropumps and microvalves, operating in an automatic format. DEP forces operated at a low voltage (15 Vp-p) and at a specific frequency (16 MHz) can be used to separate cells in a continuous flow, which can be subsequently collected. In order to transport the cell samples continuously, a serpentine-shape (S-shape) pneumatic micropump device was constructed onto the chip device to drive the samples flow through the microchannel, which was activated by the pressurized air injection. The mixed cell samples were first injected into an inlet reservoir and driven through the DEP electrodes to separate specific samples. Finally, separated cell samples were collected individually in two outlet reservoirs controlled by microvalves. With the same operation principle, the nucleus of the specific cells can be collected after the cell lysis procedure. The pumping rate of the micropump was measured to be 39.8 microl/min at a pressure of 25 psi and a driving frequency of 28 Hz. For the cell separation process, the initial flow rate was 3 microl/min provided by the micropump. A throughput of 240 cells/min can be obtained by using the developed device. The DEP electrode array, microchannels, micropumps and microvalves are integrated on a microfluidic chip using micro-electro-mechanical-systems (MEMS) technology to perform several crucial procedures including cell transportation, separation and collection. The dimensions of the integrated chip device were measured to be 6x7 cm. By integrating an S-shape pump and pneumatic microvalves, different cells are automatically transported in the microchannel, separated by the DEP forces, and finally sorted to specific chambers. Experimental data show that viable and non-viable cells (human lung cancer cell, A549-luc-C8) can be successfully separated and collected using the developed microfluidic platform. The separation accuracy, depending on the DEP operating mode used, of the viable and non-viable cells are measured to be 84 and 81%, respectively. In addition, after cell lysis, the nucleus can be also collected using a similar scheme. The developed automatic microfluidic platform is useful for extracting nuclear proteins from living cells. The extracted nuclear proteins are ready for nuclear binding assays or the study of nuclear proteins.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17508288
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9005
      1. Author :
        Jason R. McCarthy, Purvish Patel, Ion Botnaru, Pouneh Haghayeghi, Ralph Weissleder and Farouc A. Jaffer
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Bioconjugate Chemistry
      6. Products :
      7. Volume :
        20
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        In vivo imaging; thrombi; VivoTag
      12. Abstract :
        Thrombosis underlies numerous life-threatening cardiovascular syndromes. Development of thrombosis-specific molecular imaging agents to detect and monitor thrombogenesis and fibrinolysis in vivo could improve the diagnosis, risk stratification, and treatment of thrombosis syndromes. To this end, we have synthesized efficient multimodal nanoagents targeted to two different constituents of thrombi, namely, fibrin and activated factor XIII. These agents are targeted via the conjugation of peptide-targeting ligands to the surface of fluorescently labeled magnetic nanoparticles. As demonstrated by in vitro and in vivo studies, both nanoagents possess high affinities for thrombi, and enable mutimodal fluorescence and magnetic resonance imaging.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19456115
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4647
      1. Author :
        Napp, J.; Mathejczyk, J.E.; Alves, F.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Pediatric Radiology
      6. Products :
      7. Volume :
        41
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        AngioSense 680; Cancer; glioblastoma xenograft; mice; tumor vascularization
      12. Abstract :
        To obtain information on the occurrence and location of molecular events as well as to track target-specific probes such as antibodies or peptides, drugs or even cells non-invasively over time, optical imaging (OI) technologies are increasingly applied. Although OI strongly contributes to the advances made in preclinical research, it is so far, with the exception of optical coherence tomography (OCT), only very sparingly applied in clinical settings. Nevertheless, as OI technologies evolve and improve continuously and represent relatively inexpensive and harmful methods, their implementation as clinical tools for the assessment of children disease is increasing. This review focuses on the current preclinical and clinical applications as well as on the future potential of OI in the clinical routine. Herein, we summarize the development of different fluorescence and bioluminescence imaging techniques for microscopic and macroscopic visualization of microstructures and biological processes. In addition, we discuss advantages and limitations of optical probes with distinct mechanisms of target-detection as well as of different bioluminescent reporter systems. Particular attention has been given to the use of near-infrared (NIR) fluorescent probes enabling observation of molecular events in deeper tissue.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21221568
      14. Call Number :
        PKI @ user @ 8559
      15. Serial :
        4796
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        Nature
      6. Products :
      7. Volume :
        433
      8. Issue :
        7025
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Aging; Animals; Antigens, CD36; Cell Line; Dimerization; Ethylnitrosourea; Gene Deletion; Glycerides; Homozygote; Humans; Immunologic Deficiency Syndromes; Lipopeptides; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Mutagenesis; Mutation; Oligopeptides; Peptidoglycan; Phenotype; Receptors, Cell Surface; Signal Transduction; Staphylococcal Infections; Staphylococcus aureus; Toll-Like Receptor 2; Toll-Like Receptors; Tumor Necrosis Factor-alpha; Zymosan
      12. Abstract :
        Toll-like receptor 2 (TLR2) is required for the recognition of numerous molecular components of bacteria, fungi and protozoa. The breadth of the ligand repertoire seems unusual, even if one considers that TLR2 may form heteromers with TLRs 1 and 6 (ref. 12), and it is likely that additional proteins serve as adapters for TLR2 activation. Here we show that an N-ethyl-N-nitrosourea-induced nonsense mutation of Cd36 (oblivious) causes a recessive immunodeficiency phenotype in which macrophages are insensitive to the R-enantiomer of MALP-2 (a diacylated bacterial lipopeptide) and to lipoteichoic acid. Homozygous mice are hypersusceptible to Staphylococcus aureus infection. Cd36(obl) macrophages readily detect S-MALP-2, PAM(2)CSK(4), PAM(3)CSK(4) and zymosan, revealing that some--but not all--TLR2 ligands are dependent on CD36. Already known as a receptor for endogenous molecules, CD36 is also a selective and nonredundant sensor of microbial diacylglycerides that signal via the TLR2/6 heterodimer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15690042
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9991
      1. Author :
        Echchannaoui, H.; Frei, K.; Schnell, C.; Leib, S. L.; Zimmerli, W.; Landmann, R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2002
      5. Publication :
        Journal of Infectious Diseases
      6. Products :
      7. Volume :
        186
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals, Ceftriaxone/therapeutic use, Cephalosporins/therapeutic use, Disease Models, Animal, Disease Susceptibility, Drosophila Proteins, Inflammation/genetics/immunology/microbiology/pathology, Listeria Infections/genetics/immunology, Listeria monocytogenes/genetics/immunology, Membrane Glycoproteins/ deficiency/genetics, Meningitis, Bacterial/ genetics/ immunology/microbiology/pathology, Mice, Mice, Inbred C57BL, Mice, Knockout, Pneumococcal Infections/genetics/immunology/microbiology/pathology, Receptors, Cell Surface/ deficiency/genetics, Streptococcus pneumoniae/ immunology, Time Factors, Toll-Like Receptor 2, Toll-Like Receptors IVIS, Xenogen, Xen10
      12. Abstract :
        Toll-like receptor-2 (TLR2) mediates host responses to gram-positive bacterial wall components. TLR2 function was investigated in a murine Streptococcus pneumoniae meningitis model in wild-type (wt) and TLR2-deficient (TLR2(-/-)) mice. TLR2(-/-) mice showed earlier time of death than wt mice (P<.02). Plasma interleukin-6 levels and bacterial numbers in blood and peripheral organs were similar for both strains. With ceftriaxone therapy, none of the wt but 27% of the TLR2(-/-) mice died (P<.04). Beyond 3 hours after infection, TLR2(-/-) mice had higher bacterial loads in brain than did wt mice, as assessed with luciferase-tagged S. pneumoniae by means of a Xenogen-CCD (charge-coupled device) camera. After 24 h, tumor necrosis factor activity was higher in cerebrospinal fluid of TLR2(-/-) than wt mice (P<.05) and was related to increased blood-brain barrier permeability (Evans blue staining, P<.02). In conclusion, the lack of TLR2 was associated with earlier death from meningitis, which was not due to sepsis but to reduced brain bacterial clearing, followed by increased intrathecal inflammation.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/12198614
      14. Call Number :
        137638
      15. Serial :
        7950
      1. Author :
        Balibar, Carl J; Shen, Xiaoyu; McGuire, Dorothy; Yu, Donghui; McKenney, David; Tao, Jianshi
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Microbiology (Reading, England)
      6. Products :
      7. Volume :
        156
      8. Issue :
        Pt 5
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Bacterial Proteins; Bacteriolysis; Bioware; Cell Wall; Gene Expression Profiling; Gene Knockout Techniques; Genes, Reporter; Lysostaphin; Mice; Microbial Sensitivity Tests; Sepsis; Staphylococcus aureus; Virulence; Xen29
      12. Abstract :
        Transcriptional profiling data accumulated in recent years for the clinically relevant pathogen Staphylococcus aureus have established a cell wall stress stimulon, which comprises a coordinately regulated set of genes that are upregulated in response to blockage of cell wall biogenesis. In particular, the expression of cwrA (SA2343, N315 notation), which encodes a putative 63 amino acid polypeptide of unknown biological function, increases over 100-fold in response to cell wall inhibition. Herein, we seek to understand the biological role that this gene plays in S. aureus. cwrA was found to be robustly induced by all cell wall-targeting antibiotics tested – vancomycin, oxacillin, penicillin G, phosphomycin, imipenem, hymeglusin and bacitracin – but not by antibiotics with other mechanisms of action, including ciprofloxacin, erythromycin, chloramphenicol, triclosan, rifampicin, novobiocin and carbonyl cyanide 3-chlorophenylhydrazone. Although a DeltacwrA S. aureus strain had no appreciable shift in MICs for cell wall-targeting antibiotics, the knockout was shown to have reduced cell wall integrity in a variety of other assays. Additionally, the gene was shown to be important for virulence in a mouse sepsis model of infection.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20167623
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9037