1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

211–220 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Engelsman, Anton F; Krom, Bastiaan P; Busscher, Henk J; van Dam, Gooitzen M; Ploeg, Rutger J; van der Mei, Henny C
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Acta biomaterialia
      6. Products :
      7. Volume :
        5
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Bioware; Connective Tissue; Diffusion; Drug Implants; Female; Mice; Mice, Inbred BALB C; Nitric Oxide; Polyvinyls; Prostheses and Implants; pXen-5; Staphylococcal Infections; Xen29
      12. Abstract :
        Infection of surgical meshes used in abdominal wall reconstructions often leads to removal of the implant and increases patient morbidity due to repetitive operations and hospital administrations. Treatment with antibiotics is ineffective due to the biofilm mode of growth of the infecting bacteria and bears the risk of inducing antibiotic resistance. Hence there is a need for alternative methods to prevent and treat mesh infection. Nitric oxide (NO)-releasing coatings have been demonstrated to possess bactericidal properties in vitro. It is the aim of this study to assess possible benefits of a low concentration NO-releasing carbon-based coating on monofilament polypropylene meshes with respect to infection control in vitro and in vivo. When applied on surgical meshes, NO-releasing coatings showed significant bactericidal effect on in vitro biofilms of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and CNS. However, using bioluminescent in vivo imaging, no beneficial effects of this NO-releasing coating on subcutaneously implanted surgical meshes in mice could be observed.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19251498
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9019
      1. Author :
        Lin, S. A.; Patel, M.; Suresch, D.; Connolly, B.; Bao, B.; Groves, K.; Rajopadhye, M.; Peterson, J. D.; Klimas, M.; Sur, C.; Bednar, B.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Int J Mol Imaging
      6. Products :
      7. Volume :
        2012
      8. Issue :
        N/A
      9. Page Numbers :
        189254
      10. Research Area :
        N/A
      11. Keywords :
        FMT, Prosense, CatB, Cathepsin B, fluorescence imaing, tomography, microCT
      12. Abstract :
        Inflammation as a core pathological event of atherosclerotic lesions is associated with the secretion of cathepsin proteases and the expression of alpha(v)beta(3) integrin. We employed fluorescence molecular tomographic (FMT) noninvasive imaging of these molecular activities using cathepsin sensing (ProSense, CatB FAST) and alpha(v)beta(3) integrin (IntegriSense) near-infrared fluorescence (NIRF) agents. A statistically significant increase in the ProSense and IntegriSense signal was observed within the chest region of apoE(-/-) mice (P < 0.05) versus C57BL/6 mice starting 25 and 22 weeks on high cholesterol diet, respectively. In a treatment study using ezetimibe (7 mg/kg), there was a statistically significant reduction in the ProSense and CatB FAST chest signal of treated (P < 0.05) versus untreated apoE(-/-) mice at 31 and 21 weeks on high cholesterol diet, respectively. The signal of ProSense and CatB FAST correlated with macrophage counts and was found associated with inflammatory cells by fluorescence microscopy and flow cytometry of cells dissociated from aortas. This report demonstrates that cathepsin and alpha(v)beta(3) integrin NIRF agents can be used as molecular imaging biomarkers for longitudinal detection of atherosclerosis, and cathepsin agents can monitor anti-inflammatory effects of ezetimibe with applications in preclinical testing of therapeutics and potentially for early diagnosis of atherosclerosis in patients.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23119157
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10571
      1. Author :
        Kim DE, Kim JY, Schellingerhout D, Shon SM, Jeong SW, Kim EJ and Kim WK
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Molecular Imaging
      6. Products :
      7. Volume :
        8
      8. Issue :
        5
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        ProSense; in vivo imaging
      12. Abstract :
        Inflammation in atherosclerotic plaques causes plaque vulnerability and rupture, leading to thromboembolic complications. Cathepsin B (CatB) proteases secreted by macrophages play a major role in plaque inflammation. We used a CatB-activatable near-infrared fluorescence (NIRF) imaging agent to demonstrate the inflammatory component in mice atheromata and the atherosclerosis- modulating effects of atorvastatin or glucosamine treatments. Apolipoprotein E knockout mice (n = 35) were fed normal chow, a Western diet, a Western diet + atorvastatin, a Western diet + glucosamine, or a Western diet + atorvastatin + glucosamine for 14 weeks. Twenty-four hours after the intravenous injection of a CatB-activatable probe, ex vivo NIRF imaging of the aortas and brains was performed, followed by histology. The CatB-related signal, observed in the aortas but not in the cerebral arteries, correlated very well with protease activity and the presence of macrophages on histology. Animals on Western diets could be distinguished from animals on a normal diet. The antiatherosclerotic effects of atorvastatin and glucosamine could be demonstrated, with reduced CatB-related signal compared with untreated animals. Plaque populations were heterogeneous within individuals, with some plaques showing a high and others a lower CatB-related signal. These differences in signal intensity could not be predicted by visual inspection of the plaques but did correlate with histologic evidence of inflammation in every case. This suggests that vulnerable inflamed plaques can be identified by optical molecular imaging.
      13. URL :
        http://www.bcdecker.com/pubMedLinkOut.aspx?pub=MIO&vol=8&iss=5&page=291
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4558
      1. Author :
        Goldberg, M.S.; Xing, D.; Ren, Y.; Orsulic, S.; Bhatia, S.N.; Sharp, P.A.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Proceedings of the National Academy of Sciences of the United States of America
      6. Products :
      7. Volume :
        108
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        brca1; Cancer; In vivo imaging (VisEn); IVIS Spectrum imaging system; mice; siRNA; vivotag-750
      12. Abstract :
        Inhibition of the DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP1) with small molecules has been shown to be an effective treatment for ovarian cancer with BRCA mutations. Here, we report the in vivo administration of siRNA to Parp1 in mouse models of ovarian cancer. A unique member of the lipid-like materials known as lipidoids is shown to deliver siRNA to disseminated murine ovarian carcinoma allograft tumors following intraperitoneal (i.p.) injection. siParp1 inhibits cell growth, primarily by induction of apoptosis, in Brca1-deficient cells both in vitro and in vivo. Additionally, the treatment extends the survival of mice bearing tumors derived from Brca1-deficient ovarian cancer cells but not from Brca1 wild-type cells, confirming the proposed mechanism of synthetic lethality. Because there are 17 members of the Parp family, the inherent complementarity of RNA affords a high level of specificity for therapeutically addressing Parp1 in the context of impaired homologous recombination.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21187397
      14. Call Number :
        PKI @ user @ 8448
      15. Serial :
        4805
      1. Author :
        Goldberg, M. S.; Xing, D.; Ren, Y.; Orsulic, S.; Bhatia, S. N.; Sharp, P. A.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Proc Natl Acad Sci U S A
      6. Products :
      7. Volume :
        108
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        VivoTag, IVIS, Vivotag, Animals; BRCA1 Protein/*genetics; Drug Carriers; Drug Delivery Systems; Female; Humans; Mice; Nanoparticles/*chemistry; Nanotechnology/methods; Neoplasm Transplantation; Ovarian Neoplasms/*genetics/*therapy; Poly(ADP-ribose) Polymerases/*genetics; RNA Interference; RNA, Small Interfering/*metabolism; Treatment Outcome
      12. Abstract :
        Inhibition of the DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP1) with small molecules has been shown to be an effective treatment for ovarian cancer with BRCA mutations. Here, we report the in vivo administration of siRNA to Parp1 in mouse models of ovarian cancer. A unique member of the lipid-like materials known as lipidoids is shown to deliver siRNA to disseminated murine ovarian carcinoma allograft tumors following intraperitoneal (i.p.) injection. siParp1 inhibits cell growth, primarily by induction of apoptosis, in Brca1-deficient cells both in vitro and in vivo. Additionally, the treatment extends the survival of mice bearing tumors derived from Brca1-deficient ovarian cancer cells but not from Brca1 wild-type cells, confirming the proposed mechanism of synthetic lethality. Because there are 17 members of the Parp family, the inherent complementarity of RNA affords a high level of specificity for therapeutically addressing Parp1 in the context of impaired homologous recombination.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21187397
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10566
      1. Author :
        Zhang, H; Fagan, D H; Zeng, X; Freeman, K T; Sachdev, D; Yee, D
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Oncogene
      6. Products :
      7. Volume :
        29
      8. Issue :
        17
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Cell Line, Tumor; Cell Proliferation; Female; Humans; Insulin; Lung Neoplasms; Lymphangiogenesis; MDA-MB-231-D3H1 cells; Mice; Neoplasm Metastasis; Neoplasms, Experimental; Neovascularization, Pathologic; Phosphorylation; Proto-Oncogene Proteins c-akt; Receptor, Insulin; RNA, Small Interfering; Vascular Endothelial Growth Factor A
      12. Abstract :
        Insulin receptor (IR) and the type I IGF receptor (IGF1R) are structurally and functionally related. The function of IGF1R in cancer has been well documented and anti-IGF1R strategies to treat cancer have shown initial positive results. However, the role of IR in tumor biology, independent of IGF1R, is less clear. To address this issue, short hairpin RNA (shRNA) was used to specifically downregulate IR in two cancer cell lines, LCC6 and T47D. Cells with reduced IR showed reduced insulin-stimulated Akt activation, without affecting IGF1R activation. Cells with reduced IR formed fewer colonies in anchorage-independent conditions. LCC6 IR shRNA xenograft tumors in mice had reduced growth, angiogenesis and lymphangiogensis when compared with LCC6 wild-type cells. Accordingly, LCC6 IR shRNA clones produced less hypoxia-inducible factor-1alpha, vascular endothelial growth factor (VEGF)-A and VEGF-D. Furthermore, LCC6 IR shRNA cells formed fewer pulmonary metastases when compared with LCC6 wild-type cells. Using in vivo luciferase imaging, we have shown that LCC6 IR shRNA cells have less seeding and colonization potential in the lung and liver of mice than LCC6 cells. In conclusion, downregulation of IR inhibited cancer cell proliferation, angiogenesis, lymphangiogenesis and metastasis. Our data argue that IR should also be targeted in cancer therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20154728
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8986
      1. Author :
        Cao, L.; Kobayakawa, S.; Yoshiki, A.; Abe, K.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        7
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        AngioSense, Abdomen; Animals; Imaging, Three-Dimensional; Liver/cytology; Mice; Mice, Transgenic; Microscopy/*instrumentation/*methods; Molecular Imaging/*instrumentation/*methods; Pancreas/cytology/ultrastructure; Time-Lapse Imaging
      12. Abstract :
        Intravital imaging of brain and bone marrow cells in the skull with subcellular resolution has revolutionized neurobiology, immunology and hematology. However, the application of this powerful technology in studies of abdominal organs has long been impeded by organ motion caused by breathing and heartbeat. Here we describe for the first time a simple device designated 'microstage' that effectively reduces organ motions without causing tissue lesions. Combining this microstage device with an upright intravital laser scanning microscope equipped with a unique stick-type objective lens, the system enables subcellular-level imaging of abdominal organs in live mice. We demonstrate that this technique allows for the quantitative analysis of subcellular structures and gene expressions in cells, the tracking of intracellular processes in real-time as well as three-dimensional image construction in the pancreas and liver of the live mouse. As the aforementioned analyses based on subcellular imaging could be extended to other intraperitoneal organs, the technique should offer great potential for investigation of physiological and disease-specific events of abdominal organs. The microstage approach adds an exciting new technique to the in vivo imaging toolbox.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22479464
      14. Call Number :
        PKI @ kd.modi @ 6
      15. Serial :
        10431
      1. Author :
        Shan, Liang; Wang, Songping; Korotcov, Alexandru; Sridhar, Rajagopalan; Wang, Paul C
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Ethnicity & disease
      6. Products :
      7. Volume :
        18
      8. Issue :
        2 Suppl 2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Breast Neoplasms; Disease Models, Animal; Humans; Luciferases; Luminescent Measurements; Lung Neoplasms; Mammary Neoplasms, Animal; MDA-MB-231-D3H1 cells; Mice; Mice, Nude; Tumor Cells, Cultured
      12. Abstract :
        INTRODUCTION Convenient animal models are needed to study the progression and treatment of human tumors in vivo. Luciferase-based bioluminescent imaging (BLI) enables researchers to monitor tumors noninvasively and is sensitive to subtle changes in tumors. METHODS Three human breast cancer models in nude mice were established by using luciferase-expressing MDA-MB-231-luc cells. They were subcutaneous xenografts (n = 8), mammary gland xenografts (n = 5), and lung metastases (n = 3). The tumors were imaged in live mice by using a highly sensitive BLI system. The relationship between the intensity of bioluminescence from the tumor was analyzed with respect to tumor volume. Bioluminescent signals from lung metastases were studied to determine the threshold of detectability. RESULTS Tumors growing in the mice's backs and mammary gland fat pads were imaged dynamically after administration of D-luciferin. The bioluminescent intensity from the tumors gradually increased and then decreased in a one-hour span. The time to reach maximum signal intensity differed significantly among tumors and was independent of tumor volume and unrelated to maximum signal intensity. A significant correlation was observed between tumor volume and maximum signal intensity in tumors from both sites. Lung metastatic lesions of .3-.5 mm in diameter were clearly detectable through the entire animal imaging process. CONCLUSION The animal models established with luciferase-expressing cancer cells in combination with BLI provide a system for rapid, noninvasive, and quantitative analysis of tumor biomass and metastasis. This biosystem simplifies in vivo monitoring of tumors and will be useful for noninvasive investigation of tumor growth and response to therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18646323
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8991
      1. Author :
        Jenkins, Darlene E; Hornig, Yvette S; Oei, Yoko; Dusich, Joan; Purchio, Tony
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        Breast cancer research: BCR
      6. Products :
      7. Volume :
        7
      8. Issue :
        4
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Breast Neoplasms; Disease Models, Animal; Female; Humans; Luciferases; Mammary Neoplasms, Animal; MDA-MB-231-D3H2LN cells; Mice; Mice, Nude; Neoplasm Metastasis; Plasmids; Transplantation, Heterologous; Tumor Cells, Cultured
      12. Abstract :
        INTRODUCTION Our goal was to generate xenograft mouse models of human breast cancer based on luciferase-expressing MDA-MB-231 tumor cells that would provide rapid mammary tumor growth; produce metastasis to clinically relevant tissues such as lymph nodes, lung, and bone; and permit sensitive in vivo detection of both primary and secondary tumor sites by bioluminescent imaging. METHOD Two clonal cell sublines of human MDA-MB-231 cells that stably expressed firefly luciferase were isolated following transfection of the parental cells with luciferase cDNA. Each subline was passaged once or twice in vivo to enhance primary tumor growth and to increase metastasis. The resulting luciferase-expressing D3H1 and D3H2LN cells were analyzed for long-term bioluminescent stability, primary tumor growth, and distal metastasis to lymph nodes, lungs, bone and soft tissues by bioluminescent imaging. Cells were injected into the mammary fat pad of nude and nude-beige mice or were delivered systemically via intracardiac injection. Metastasis was also evaluated by ex vivo imaging and histologic analysis postmortem. RESULTS The D3H1 and D3H2LN cell lines exhibited long-term stable luciferase expression for up to 4-6 months of accumulative tumor growth time in vivo. Bioluminescent imaging quantified primary mammary fat pad tumor development and detected early spontaneous lymph node metastasis in vivo. Increased frequency of spontaneous lymph node metastasis was observed with D3H2LN tumors as compared with D3H1 tumors. With postmortem ex vivo imaging, we detected additional lung micrometastasis in mice with D3H2LN mammary tumors. Subsequent histologic evaluation of tissue sections from lymph nodes and lung lobes confirmed spontaneous tumor metastasis at these sites. Following intracardiac injection of the MDA-MB-231-luc tumor cells, early metastasis to skeletal tissues, lymph nodes, brain and various visceral organs was detected. Weekly in vivo imaging data permitted longitudinal analysis of metastasis at multiple sites simultaneously. Ex vivo imaging data from sampled tissues verified both skeletal and multiple soft tissue tumor metastasis. CONCLUSION This study characterized two new bioluminescent MDA-MB-231-luc human breast carcinoma cell lines with enhanced tumor growth and widespread metastasis in mice. Their application to current xenograft models of breast cancer offers rapid and highly sensitive detection options for preclinical assessment of anticancer therapies in vivo.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15987449
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8960
Back to Search
Select All  |  Deselect All