1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

111–120 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        American journal of respiratory and critical care medicine
      6. Products :
      7. Volume :
        175
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Cattle; Cells, Cultured; Cystic Fibrosis; Flavoproteins; Humans; Hydrogen peroxide; Immunity, Innate; Immunity, Mucosal; Lactoperoxidase; Lung Diseases; Pseudomonas aeruginosa; Rats; Reactive Oxygen Species; Respiratory Mucosa; RNA, Small Interfering; Staphylococcus aureus; Thiocyanates; Trachea; Xen8.1
      12. Abstract :
        RATIONALE The respiratory tract is constantly exposed to airborne microorganisms. Nevertheless, normal airways remain sterile without recruiting phagocytes. This innate immune activity has been attributed to mucociliary clearance and antimicrobial polypeptides of airway surface liquid. Defective airway immunity characterizes cystic fibrosis (CF), a disease caused by mutations in the CF transmembrane conductance regulator, a chloride channel. The pathophysiology of defective immunity in CF remains to be elucidated. OBJECTIVE We investigated the ability of non-CF and CF airway epithelia to kill bacteria through the generation of reactive oxygen species (ROS). METHODS ROS production and ROS-mediated bactericidal activity were determined on the apical surfaces of human and rat airway epithelia and on cow tracheal explants. MEASUREMENTS AND MAIN RESULTS Dual oxidase enzyme of airway epithelial cells generated sufficient H(2)O(2) to support production of bactericidal hypothiocyanite (OSCN(-)) in the presence of airway surface liquid components lactoperoxidase and thiocyanate (SCN(-)). This OSCN(-) formation eliminated Staphylococcus aureus and Pseudomonas aeruginosa on airway mucosal surfaces, whereas it was nontoxic to the host. In contrast to normal epithelia, CF epithelia failed to secrete SCN(-), thereby rendering the oxidative antimicrobial system inactive. CONCLUSIONS These data indicate a novel innate defense mechanism of airways that kills bacteria via ROS and suggest a new cellular and molecular basis for defective airway immunity in CF.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17082494
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9988
      1. Author :
        Shi, Lei; Takahashi, Kazue; Dundee, Joseph; Shahroor-Karni, Sarit; Thiel, Steffen; Jensenius, Jens Christian; Gad, Faten; Hamblin, Michael R; Sastry, Kedarnath N; Ezekowitz, R Alan B
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2004
      5. Publication :
        The Journal of experimental medicine
      6. Products :
      7. Volume :
        199
      8. Issue :
        10
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Disease Susceptibility; DNA, Bacterial; Lung; Mannose-Binding Lectin; Mice; Mice, Knockout; Reference Values; Reverse Transcriptase Polymerase Chain Reaction; Spleen; Staphylococcal Infections; Xen8.1
      12. Abstract :
        Gram-positive organisms like Staphylococcus aureus are a major cause of morbidity and mortality worldwide. Humoral response molecules together with phagocytes play a role in host responses to S. aureus. The mannose-binding lectin (MBL, also known as mannose-binding protein) is an oligomeric serum molecule that recognizes carbohydrates decorating a broad range of infectious agents including S. aureus. Circumstantial evidence in vitro and in vivo suggests that MBL plays a key role in first line host defense. We tested this contention directly in vivo by generating mice that were devoid of all MBL activity. We found that 100% of MBL-null mice died 48 h after exposure to an intravenous inoculation of S. aureus compared with 45% mortality in wild-type mice. Furthermore, we demonstrated that neutrophils and MBL are required to limit intraperitoneal infection with S. aureus. Our study provides direct evidence that MBL plays a key role in restricting the complications associated with S. aureus infection in mice and raises the idea that the MBL gene may act as a disease susceptibility gene against staphylococci infections in humans.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15148336
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9994
      1. Author :
        Bucki, Robert; Leszczynska, Katarzyna; Byfield, Fitzroy J; Fein, David E; Won, Esther; Cruz, Katrina; Namiot, Andrzej; Kulakowska, Alina; Namiot, Zbigniew; Savage, Paul B; Diamond, Scott L; Janmey, Paul A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Antimicrobial agents and chemotherapy
      6. Products :
      7. Volume :
        54
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Anti-Inflammatory Agents; Bacterial Infections; Biofilms; Cathelicidins; Cattle; Cells, Cultured; Dexamethasone; Drug Design; Humans; Interleukins; Macrophages; Microbial Sensitivity Tests; Neutrophils; Phagocytosis; Pseudomonas aeruginosa; Receptors, Glucocorticoid; Spermine; Staphylococcus aureus; Xen5
      12. Abstract :
        The rising number of antibiotic-resistant bacterial strains represents an emerging health problem that has motivated efforts to develop new antibacterial agents. Endogenous cationic antibacterial peptides (CAPs) that are produced in tissues exposed to the external environment are one model for the design of novel antibacterial compounds. Here, we report evidence that disubstituted dexamethasone-spermine (D2S), a cationic corticosteroid derivative initially identified as a by-product of synthesis of dexamethasone-spermine (DS) for the purpose of improving cellular gene delivery, functions as an antibacterial peptide-mimicking molecule. This moiety exhibits bacterial killing activity against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa present in cystic fibrosis (CF) sputa, and Pseudomonas aeruginosa biofilm. Although compromised in the presence of plasma, D2S antibacterial activity resists the proteolytic activity of pepsin and is maintained in ascites, cerebrospinal fluid, saliva, and bronchoalveolar lavage (BAL) fluid. D2S also enhances S. aureus susceptibility to antibiotics, such as amoxicillin (AMC), tetracycline (T), and amikacin (AN). Inhibition of interleukin-6 (IL-6) and IL-8 release from lipopolysaccharide (LPS)- or lipoteichoic acid (LTA)-treated neutrophils in the presence of D2S suggests that this molecule might also prevent systemic inflammation caused by bacterial wall products. D2S-mediated translocation of green fluorescent protein (GFP)-labeled glucocorticoid receptor (GR) in bovine aorta endothelial cells (BAECs) suggests that some of its anti-inflammatory activities involve engagement of glucocorticoid receptors. The combined antibacterial and anti-inflammatory activities of D2S suggest its potential as an alternative to natural CAPs in the prevention and treatment of some bacterial infections.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20308375
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9996
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Lasers in surgery and medicine
      6. Products :
      7. Volume :
        39
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Anti-Infective Agents; Biofilms; Dental Pulp Cavity; Dental Pulp Diseases; Endodontics; Humans; Luminescence; Photochemotherapy; Polyethyleneimine; Porphyrins; Proteus Infections; Proteus mirabilis; Pseudomonas aeruginosa; Pseudomonas Infections; Xen5; Xen44
      12. Abstract :
        BACKGROUND AND OBJECTIVE To compare the effectiveness of antimicrobial photodynamic therapy (PDT), standard endodontic treatment and the combined treatment to eliminate bacterial biofilms present in infected root canals. STUDY DESIGN/MATERIALS AND METHODS Ten single-rooted freshly extracted human teeth were inoculated with stable bioluminescent Gram-negative bacteria, Proteus mirabilis and Pseudomonas aeruginosa to form 3-day biofilms in prepared root canals. Bioluminescence imaging was used to serially quantify bacterial burdens. PDT employed a conjugate between polyethylenimine and chlorin(e6) as the photosensitizer (PS) and 660-nm diode laser light delivered into the root canal via a 200-micro fiber, and this was compared and combined with standard endodontic treatment using mechanical debridement and antiseptic irrigation. RESULTS Endodontic therapy alone reduced bacterial bioluminescence by 90% while PDT alone reduced bioluminescence by 95%. The combination reduced bioluminescence by >98%, and importantly the bacterial regrowth observed 24 hours after treatment was much less for the combination (P<0.0005) than for either single treatment. CONCLUSIONS Bioluminescence imaging is an efficient way to monitor endodontic therapy. Antimicrobial PDT may have a role to play in optimized endodontic therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17066481
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9997
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Brazilian dental journal
      6. Products :
      7. Volume :
        18
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Colony Count, Microbial; Cuspid; Dental Pulp Cavity; Disinfectants; Drug Combinations; Genetic Engineering; Humans; Hydrogen peroxide; Incisor; Luminescent Measurements; Luminescent Proteins; Maxilla; Pseudomonas aeruginosa; Root Canal Irrigants; Root Canal Preparation; Sensitivity and Specificity; Sodium Hypochlorite; Xen5
      12. Abstract :
        Microbial infection plays an important role in the development of pulp necrosis and formation of periapical lesions. In vitro and in vivo research in this field, traditionally microbiological culture methods using paper point sampling and quantitative culture, faces difficulties in completely removing bacteria from the root canal system and analyzing sequential procedures. This study employed genetically engineered bioluminescent bacteria and a light-sensitive imaging system to allow real-time visualization of the infection. Ten extracted teeth incubated with P. aeruginosa were treated by mechanical instrumentation with K-files (#30 K-file, #35 K-file and #40 K-file) and chemical irrigation with sodium hypochlorite and hydrogen peroxide. Irrigation alone reduced the contamination in 18%; the first chemomechanical sequence (instrumentation with a #30 K-file + irrigation) provided 41% of reduction; the second sequence (#35 K-file + irrigation) achieved 62%; and the complete therapy (#30 K-file + #35 K-file + #40 K-file + irrigation) achieved 93% of bacterial reduction. These results suggest that the endodontic treatment is dependent on the association of a chemical and mechanical approaches and that root canal enlargement improves bacterial reduction probably because the irrigation has more access to the apical third.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18176710
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9998
      1. Author :
        Sadikot, Ruxana T; Zeng, Heng; Yull, Fiona E; Li, Bo; Cheng, Dong-sheng; Kernodle, Douglas S; Jansen, E Duco; Contag, Christopher H; Segal, Brahm H; Holland, Steven M; Blackwell, Timothy S; Christman, John W
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2004
      5. Publication :
        Journal of immunology (Baltimore, Md.: 1950)
      6. Products :
      7. Volume :
        172
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Cells, Cultured; Dose-Response Relationship, Immunologic; Immunity, Innate; Lung; Macrophages; Membrane Glycoproteins; Mice; Mice, Inbred C3H; Mice, Inbred C57BL; Mice, Inbred DBA; Mice, Transgenic; NADPH Oxidase; Neutrophil Infiltration; NF-kappa B; Phosphoproteins; Pneumonia, Bacterial; Pseudomonas Infections; Receptors, Cell Surface; Signal Transduction; Toll-Like Receptors; Xen5
      12. Abstract :
        We examined the role of redox signaling generated by NADPH oxidase in activation of NF-kappaB and host defense against Pseudomonas aeruginosa pneumonia. Using mice with an NF-kappaB-driven luciferase reporter construct (HIV-LTR/luciferase (HLL)), we found that intratracheal administration of P. aeruginosa resulted in a dose-dependent neutrophilic influx and activation of NF-kappaB. To determine the effects of reactive oxygen species generated by the NADPH oxidase system on activation of NF-kappaB, we crossbred mice deficient in p47(phox) with NF-kappaB reporter mice (p47(phox-/-)HLL). These p47(phox-/-)HLL mice were unable to activate NF-kappaB to the same degree as HLL mice with intact NADPH oxidase following P. aeruginosa infection. In addition, lung TNF-alpha levels were significantly lower in p47(phox-/-)HLL mice compared with HLL mice. Bacterial clearance was impaired in p47(phox-/-)HLL mice. In vitro studies using bone marrow-derived macrophages showed that Toll-like receptor 4 was necessary for NF-kappaB activation following treatment with P. aeruginosa. Additional studies with macrophages from p47(phox-/-) mice confirmed that redox signaling was necessary for maximal Toll-like receptor 4-dependent NF-kappaB activation in this model. These data indicate that the NADPH oxidase-dependent respiratory burst stimulated by Pseudomonas infection contributes to host defense by modulating redox-dependent signaling through the NF-kappaB pathway.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/14734763
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9999
      1. Author :
        Yang, Li; Johansson, Jan; Ridsdale, Ross; Willander, Hanna; Fitzen, Michael; Akinbi, Henry T; Weaver, Timothy E
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Journal of immunology (Baltimore, Md.: 1950)
      6. Products :
      7. Volume :
        184
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Bronchoalveolar Lavage Fluid; Hydrogen-Ion Concentration; Immunity, Innate; Klebsiella pneumoniae; Macrophages, Alveolar; Mice; Mice, Transgenic; Protein Precursors; Protein Structure, Tertiary; Proteolipids; Saposins; Staphylococcus aureus; Tissue Distribution; Xen5
      12. Abstract :
        Surfactant protein B (SP-B) proprotein contains three saposin-like protein (SAPLIP) domains: a SAPLIP domain corresponding to the mature SP-B peptide is essential for lung function and postnatal survival; the function of SAPLIP domains in the N-terminal (SP-BN) and C-terminal regions of the proprotein is not known. In the current study, SP-BN was detected in the supernatant of mouse bronchoalveolar lavage fluid (BALF) and in nonciliated bronchiolar cells, alveolar type II epithelial cells, and alveolar macrophages. rSP-BN indirectly promoted the uptake of bacteria by macrophage cell lines and directly killed bacteria at acidic pH, consistent with a lysosomal, antimicrobial function. Native SP-BN isolated from BALF also killed bacteria but only at acidic pH; the bactericidal activity of BALF at acidic pH was completely blocked by SP-BN Ab. Transgenic mice overexpressing SP-BN and mature SP-B peptide had significantly decreased bacterial burden and increased survival following intranasal inoculation with bacteria. These findings support the hypothesis that SP-BN contributes to innate host defense of the lung by supplementing the nonoxidant antimicrobial defenses of alveolar macrophages.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20007532
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9995
      1. Author :
        Curbelo, J; Moulton, K; Willard, S
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Theriogenology
      6. Products :
      7. Volume :
        73
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Cattle; Escherichia coli; Female; Genitalia, Female; Optical Phenomena; Photons; Xen14
      12. Abstract :
        The objectives of this study were to (1) characterize the photonic properties of Escherichia coli-Xen14 and (2) conduct photonic imaging of E. coli-Xen14 within bovine reproductive tract segments (RTS) ex vivo (Bos indicus). E. coli-Xen14 was grown for 24h in Luria Bertani medium (LB), with or without kanamycin (KAN). Every 24h, for an 8-d interval, inoculums were imaged and photonic emissions (PE) collected. Inoculums were subcultured and plated daily to determine the colony forming units (CFU) and ratio of photon emitters to nonemitters. In the second objective, abattoir-derived bovine reproductive tracts (n=9) were separated into posterior and anterior vagina, cervix, uterine body, and uterine horns. Two concentrations (3.2x10(8) and 3.2x10(6) CFU/200microL for relative [High] and [Low], respectively) of E. coli-Xen14 were placed in translucent tubes for detection of PE through RTS. The CFU did not differ (P=0.31) over time with or without KAN presence; they remained stable with 99.93% and 99.98% photon emitters, respectively. However, PE were lower (P<0.0001) in cultures containing KAN than in those containing no KAN (629.8+/-117.7 vs. 3012.0+/-423.5 relative lights units per second [RLU/sec], respectively). On average, the percentage of PE between RTS, for both concentrations, was higher (P<0.05) in the uterine body. In summary, E. coli-Xen14 remained stable with respect to the proportions of photon emitters with or without KAN (used to selectively culture E. coli-Xen14). However, KAN presence suppressed photonic activity. The ability to detect PE through various segments of the reproductive tract demonstrated the feasibility of monitoring the presence of E. coli-Xen14 in the bovine reproductive tract ex vivo.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19819541
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        10004
      1. Author :
        Sharma, Prashant K; Engels, Eefje; Van Oeveren, Wim; Ploeg, Rutger J; van Henny der Mei, C; Busscher, Henk J; Van Dam, Gooitzen M; Rakhorst, Gerhard
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Surgery
      6. Products :
      7. Volume :
        147
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bacteroides fragilis; Diagnostic Imaging; Disease Progression; Escherichia coli; Luciferases, Bacterial; Luminescent Agents; Male; Peritoneal Lavage; Peritonitis; Rats; Rats, Wistar; Xen14
      12. Abstract :
        BACKGROUND Bacterial peritonitis is a life-threatening abdominal infection associated with high morbidity and mortality. The rat is a popular animal model for studying peritonitis and its treatment, but longitudinal monitoring of the progression of peritonitis in live animals has been impossible until now and thus required a large number of animals. Our objective was to develop a noninvasive in vivo imaging technique to monitor the spatiotemporal spread of bacterial peritonitis. METHODS Peritonitis was induced in 8 immunocompetent male Wistar rats by placing fibrin clots containing 5x10(8) cells of both Bacteroides fragilis (American Type Tissue Culture [ATCC)] 25,285 and bioluminescent Escherichia coli Xen14. After 1 or 2 days, infected clots were removed and open abdomen lavage was performed. In vivo bioluminescent imaging was used to monitor the spread of peritonitis. RESULTS Bioluminescent in vivo imaging showed an increase in the area of spread, and the number of E. coli tripled into the rat's abdominal cavity on day 1 after clot insertion; however, on day 2, encapsulation of the clot confined bacterial spread. Bioluminescent E. coli respread over the peritoneal cavity after lavage; within 10 days, however, in vivo imaging showed a decrease of 3-4 orders of magnitude in bacterial load. CONCLUSION Bioluminescent in vivo imaging can be effectively used to monitor the spatiotemporal behavior of the peritonitis during 3 different stages of the disease process: initiation, treatment, and follow-up. Imaging allows researchers to repeatedly image the same animal, thereby reducing variability and providing greater confidence in determining treatment efficacies for therapeutic interventions using a small number of animals.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19733882
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        10005
Back to Search
Select All  |  Deselect All