1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

421–430 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Pribaz, J. R.; Bernthal, N. M.; Billi, F.; Cho, J. S.; Ramos, R. I.; Guo, Y.; Cheung, A. L.; Francis, K. P.; Miller, L. S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Journal of orthopaedic research : official publication of the Orthopaedic Research Society
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        N/A
      12. Abstract :
        Post-arthroplasty infections are a devastating problem in orthopaedic surgery. While acute infections can be treated with a single stage washout and liner exchange, chronic infections lead to multiple reoperations, prolonged antibiotic courses, extended disability, and worse clinical outcomes. Unlike previous mouse models that studied an acute infection, this work aimed to develop a model of a chronic post-arthroplasty infection. To achieve this, a stainless steel implant in the knee joints of mice was inoculated with a bioluminescent Staphylococcus aureus strain (1 x 10(2) -1 x 10(4) colony forming units, CFUs) and in vivo imaging was used to monitor the bacterial burden for 42 days. Four different S. aureus strains were compared in which the bioluminescent construct was integrated in an antibiotic selection plasmid (ALC2906), the bacterial chromosome (Xen29 and Xen40), or a stable plasmid (Xen36). ALC2906 had increased bioluminescent signals through day 10, after which the signals became undetectable. In contrast, Xen29, Xen40, and Xen36 had increased bioluminescent signals through 42 days with the highest signals observed with Xen36. ALC2906, Xen29, and Xen40 induced significantly more inflammation than Xen36 as measured by in vivo enhanced green fluorescence protein (EGFP)-neutrophil flourescence of LysEGFP mice. All four strains induced comparable biofilm formation as determined by variable-pressure scanning electron microscopy. Using a titanium implant, Xen36 had higher in vivo bioluminescence signals than Xen40 but had similar biofilm formation and adherent bacteria. In conclusion, Xen29, Xen40, and especially Xen36, which had stable bioluminescent constructs, are feasible for long-term in vivo monitoring of bacterial burden and biofilm formation to study chronic post-arthroplasty infections and potential antimicrobial interventions. (c) 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21837686
      14. Call Number :
        142237
      15. Serial :
        6983
      1. Author :
        Jenkins, D. E.; Oei, Y.; Hornig, Y. S.; Yu, S. F.; Dusich, J.; Purchio, T.; Contag, P. R.
      2. Title :
        Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis
      3. Type :
        Journal Article
      4. Year :
        2003
      5. Publication :
        Clinical and Experimental Metastasis
      6. Products :
      7. Volume :
        20
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        A549-luc-C8 cells; Animals, Cell Line, Tumor, Colonic Neoplasms/pathology, Fluorouracil/therapeutic use, Humans, Image Interpretation, Computer-Assisted, Longitudinal Studies, Luciferases/diagnostic use, Luminescent Measurements, Lung Neoplasms/ secondary, Lymphatic Metastasis, Male, Mice, Mice, SCID, Mitomycin/therapeutic use, Models, Biological, Neoplasm Transplantation, Prostatic Neoplasms/drug therapy/ pathology IVIS, Xenogen
      12. Abstract :
        Bioluminescent imaging (BLI) permits sensitive in vivo detection and quantification of cells specifically engineered to emit visible light. Three stable human tumor cell lines engineered to express luciferase were assessed for their tumorigenicity in subcutaneous, intravenous and spontaneous metastasis models. Bioluminescent PC-3M-luc-C6 human prostate cancer cells were implanted subcutaneously into SCID-beige mice and were monitored for tumor growth and response to 5-FU and mitomycin C treatments. Progressive tumor development and inhibition/regression following drug treatment were observed and quantified in vivo using BLI. Imaging data correlated to standard external caliper measurements of tumor volume, but bioluminescent data permitted earlier detection of tumor growth. In a lung colonization model, bioluminescent A549-luc-C8 human lung cancer cells were injected intravenously and lung metastases were monitored in vivo by whole animal imaging. Anesthetized mice were imaged weekly allowing a temporal assessment of in vivo lung tumor growth. This longitudinal study design permitted an accurate, real-time evaluation of tumor burden in the same animals over time. End-point bioluminescence measured in vivo correlated to total lung weight at necropsy. For a spontaneous metastatic tumor model, bioluminescent HT-29-luc-D6 human colon cancer cells implanted subcutaneously produced metastases to lung and lymph nodes in SCID-beige mice. Both primary tumors and micrometastases were detected by BLI in vivo. Ex vivo imaging of excised lung lobes and lymph nodes confirmed the in vivo signals and indicated a slightly higher frequency of metastasis in some mice. Levels of bioluminescence from in vivo and ex vivo images corresponded to the frequency and size of metastatic lesions in lungs and lymph nodes as subsequently confirmed by histology. In summary, BLI provided rapid, non-invasive monitoring of tumor growth and regression in animals. Its application to traditional oncology animal models offers quantitative and sensitive analysis of tumor growth and metastasis. The ability to temporally assess tumor development and responses to drug therapies in vivo also improves upon current standard animal models that are based on single end point data.
      13. URL :
        N/A
      14. Call Number :
        139189
      15. Serial :
        5565
      1. Author :
        Bondareva, A.; Downey, C. M.; Ayres, F.; Liu, W.; Boyd, S. K.; Hallgrimsson, B.; Jirik, F. R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        4
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, Xenogen
      12. Abstract :
        Lysyl oxidase (LOX), an extracellular matrix remodeling enzyme, appears to have a role in promoting breast cancer cell motility and invasiveness. In addition, increased LOX expression has been correlated with decreases in both metastases-free, and overall survival in breast cancer patients. With this background, we studied the ability of beta-aminopropionitrile (BAPN), an irreversible inhibitor of LOX, to regulate the metastatic colonization potential of the human breast cancer cell line, MDA-MB-231. BAPN was administered daily to mice starting either 1 day prior, on the same day as, or 7 days after intracardiac injection of luciferase expressing MDA-MB-231-Luc2 cells. Development of metastases was monitored by in vivo bioluminescence imaging, and tumor-induced osteolysis was assessed by micro-computed tomography (microCT). We found that BAPN administration was able to reduce the frequency of metastases. Thus, when BAPN treatment was initiated the day before, or on the same day as the intra-cardiac injection of tumor cells, the number of metastases was decreased by 44%, and 27%, and whole-body photon emission rates (reflective of total tumor burden) were diminished by 78%, and 45%, respectively. In contrast, BAPN had no effect on the growth of established metastases. Our findings suggest that LOX activity is required during extravasation and/or initial tissue colonization by circulating MDA-MB-231 cells, lending support to the idea that LOX inhibition might be useful in metastasis prevention.
      13. URL :
        http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19440335
      14. Call Number :
        136327
      15. Serial :
        7869
      1. Author :
        Galina Gabriely, Thomas Wurdinger, Santosh Kesari, Christine C. Esau, Julja Burchard, Peter S. Linsley and Anna M. Krichevsky
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Molecular and Cellular Biology
      6. Products :
      7. Volume :
        28
      8. Issue :
        17
      9. Page Numbers :
        N/A
      10. Research Area :
        Neuroscience
      11. Keywords :
        in vivo imaging; MMPSense; microRNA 21; glioma
      12. Abstract :
        Substantial data indicate that microRNA 21 (miR-21) is significantly elevated in glioblastoma (GBM) and in many other tumors of various origins. This microRNA has been implicated in various aspects of carcinogenesis, including cellular proliferation, apoptosis, and migration. We demonstrate that miR-21 regulates multiple genes associated with glioma cell apoptosis, migration, and invasiveness, including the RECK and TIMP3 genes, which are suppressors of malignancy and inhibitors of matrix metalloproteinases (MMPs). Specific inhibition of miR-21 with antisense oligonucleotides leads to elevated levels of RECK and TIMP3 and therefore reduces MMP activities in vitro and in a human model of gliomas in nude mice. Moreover, downregulation of miR-21 in glioma cells leads to decreases of their migratory and invasion abilities. Our data suggest that miR-21 contributes to glioma malignancy by downregulation of MMP inhibitors, which leads to activation of MMPs, thus promoting invasiveness of cancer cells. Our results also indicate that inhibition of a single oncomir, like miR-21, with specific antisense molecules can provide a novel therapeutic approach for “physiological” modulation of multiple proteins whose expression is deregulated in cancer.
      13. URL :
        http://mcb.asm.org/cgi/content/abstract/28/17/5369
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4546
      1. Author :
        Klohs J, Baeva N, Steinbrink J, Bourayou R, Boettcher C, Royl G, Megow D, Dirnagl U, Priller J and Wunder A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Journal of Cerebral Blood Flow and Metabolism
      6. Products :
      7. Volume :
        29
      8. Issue :
        7
      9. Page Numbers :
        N/A
      10. Research Area :
        Neuroscience
      11. Keywords :
        MMPSense; in vivo imaging; matrix metalloproteinases; stroke
      12. Abstract :
        Matrix metalloproteinases (MMPs) have been implicated in the pathophysiology of cerebral ischemia. In this study, we explored whether MMP activity can be visualized by noninvasive near-infrared fluorescence (NIRF) imaging using an MMP-activatable probe in a mouse model of stroke. C57Bl6 mice were subjected to transient middle cerebral artery occlusion (MCAO) or sham operation. Noninvasive NIRF imaging was performed 24 h after probe injection, and target-to-background ratios (TBRs) between the two hemispheres were determined. TBRs were significantly higher in MCAO mice injected with the MMP-activatable probe than in sham-operated mice and in MCAO mice that were injected with the nonactivatable probe as controls. Treatment with an MMP inhibitor resulted in significantly lower TBRs and lesion volumes compared to injection of vehicle. To test the contribution of MMP-9 to the fluorescence signal, MMP9-deficient (MMP9(-/-)) mice and wild-type controls were subjected to MCAO of different durations to attain comparable lesion volumes. TBRs were significantly lower in MMP9(-/-) mice, suggesting a substantial contribution of MMP-9 activity to the signal. Our study shows that MMP activity after cerebral ischemia can be imaged noninvasively with NIRF using an MMP-activatable probe, which might be a useful tool to study MMP activity in the pathophysiology of the disease.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19417756
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4547
      1. Author :
        Rahul A. Sheth, Marco Maricevich and Umar Mahmood
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Atherosclerosis
      6. Products :
      7. Volume :
        212
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        Molecular imaging; Abdominal aortic aneurysm; Optical imaging; Pre-clinical; Endovascular imaging; Matrix metalloproteinase; in vivo imaging; MMPSense
      12. Abstract :
        Objectives: We present a method to quantify the inflammatory processes that drive abdominal aortic aneurysm (AAA) development that may help predict the rate of growth and thus guide medical and surgical management. We use an in vivo optical molecular imaging approach to quantify protease activity within the walls of AAAs in a rodent model.

        Methods: AAAs were generated in mice by topical application of calcium chloride, followed by the administration of the MMP inhibitor doxycycline for 3 months. After this time period, an enzyme-activatable optical molecular imaging agent sensitive to MMP activity was administered, and MMP proteolytic activity was measured in vivo. Histology and in situ zymography were performed for validation. AAAs were also generated in rats, and MMP activity within the walls of the AAAs was also quantified endovascularly.

        Results: A dose-dependent response of AAA growth rate to doxycycline administration was demonstrated, with high doses of the drug resulting in nearly complete suppression of aneurysm formation. There was a direct relationship between the rate of aneurysmal growth and measured MMP activity, with a linear best-fit well approximating the relationship. We additionally performed endovascular imaging of AAAs in rats and demonstrated a similar suppression of intramural MMP activity following doxycycline administration.

        Conclusions: We present an in vivo evaluation of MMP activity within the walls of AAAs in rodents and show a direct, linear relationship between proteolytic activity and aneurysmal growth. We also illustrate that this functional imaging method can be performed endovascularly, demonstrating potential pre-clinical and clinical applications.
      13. URL :
        http://www.atherosclerosis-journal.com/article/S0021-9150(10)00390-4/abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4550
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        International Journal of Cardiovascular Imaging
      6. Products :
      7. Volume :
        26
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        Cardiovascular disease; Atherosclerosis; Vulnerable plaque; Spectroscopy; Intravascular; in vivo imaging; MMPSense
      12. Abstract :
        Many apparent healthy persons die from cardiovascular disease, despite major advances in prevention and treatment of cardiovascular disease. Traditional cardiovascular risk factors are able to predict cardiovascular events in the long run, but fail to assess current disease activity or nearby cardiovascular events. There is a clear relation between the occurrence of cardiovascular events and the presence of so-called vulnerable plaques. These vulnerable plaques are characterized by active inflammation, a thin cap and a large lipid pool. Spectroscopy is an optical imaging technique which depicts the interaction between light and tissues, and thereby shows the biochemical composition of tissues. In recent years, impressive advances have been made in spectroscopy technology and intravascular spectroscopy is able to assess the composition of plaques of interest and thereby to identify and actually quantify plaque vulnerability. This review summarizes the current evidence for spectroscopy as a measure of plaque vulnerability and discusses the potential role of intravascular spectroscopic imaging techniques.
      13. URL :
        http://www.springerlink.com/content/kx38073782g98666/
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4552
      1. Author :
        Wallis de Vries BM, van Dam GM, Tio RA, Hillebrands JL, Slart RH and Zeebregts CJ
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Journal of Vascular Surgery
      6. Products :
      7. Volume :
        48
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        In vivo imaging; MMPSense; atherosclerotic carotid plaque
      12. Abstract :
        BACKGROUND: There is increasing evidence that plaque vulnerability, rather than the degree of stenosis, is important in predicting the occurrence of subsequent cerebral ischemic events in patients with carotid artery stenosis. The many imaging modalities currently available have different properties with regard to the visualization of the extent of vulnerability in carotid plaque formation.

        METHODS: Original published studies were identified using the MEDLINE database (January 1966 to March 2008). Manual cross-referencing was also performed.

        RESULTS: There is no single imaging modality that can produce definitive information about the state of vulnerability of an atherosclerotic plaque. Each has its own specific drawbacks, which may be the use of ionizing radiation or nephrotoxic contrast agents, an invasive character, low patient tolerability, or simply the paucity of information obtained on plaque vulnerability. Functional molecular imaging techniques such as positron emission tomography (PET), single photon emission-computed tomography (SPECT) and near infra-red spectroscopy (NIRS) do seem able accurately to visualize and even quantify features of plaque vulnerability and its pathophysiologic processes. Promising new techniques like near infra-red fluorescence imaging are being developed and may be beneficial in this field.

        CONCLUSION: There is a promising role for functional molecular imaging modalities like PET, SPECT, or NIRS related to improvement of selection criteria for carotid intervention, especially when combined with CT or MRI to add further anatomical details to molecular information. Further information will be needed to define whether and where this functional molecular imaging will fit into a clinical strategy.
      13. URL :
        http://www.jvascsurg.org/article/S0741-5214(08)01146-4/abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4643
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Circulation
      6. Products :
      7. Volume :
        119
      8. Issue :
        20
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        In vivo imaging; MMPSense
      12. Abstract :
        An extract of the first 250 words of the full text is provided, because this article has no abstract:

        Formation of unstable atherosclerotic plaque in the internal carotid artery carries a high risk for emboli and subsequent cerebral ischemic events. The fibrous cap of such a plaque may become thin and rupture as a result of the depletion of matrix components through the activation of proteolytic enzymes such as matrix-degrading proteinases. Enhanced matrix breakdown has been attributed primarily to a family of matrix-degrading metalloproteinases (MMPs) that are highly concentrated in atherosclerotic plaques by inflammatory cells (eg, macrophages, foam cells), smooth muscle cells and endothelial cells.

        Elevated serum MMP-9 concentration is associated with carotid plaque instability and the presence of infiltrated macrophages. Furthermore, analysis of the presence of MMP-9 protein by ELISA within excised carotid plaques revealed high MMP-9 protein mass in calcified segments at or near the carotid bifurcation and in segments with intraplaque hemorrhage. Gelatin zymography showed an increased gelatinase activity of MMP-9 in these segments. These data favor the important role of MMP-9 in the pathogenesis of plaque instability. We analyzed the topographic distribution of MMPs within an excised human carotid plaque by applying multispectral near-infrared fluorescence (NIRF) imaging (IVIS Spectrum, Caliper Life Sciences, Hopkinton, Mass).

        A surgical endarterectomy was performed on a 74-year-old women with a left-sided, symptomatic, >70% carotid stenosis. Immediately after endarterectomy, the plaque was placed in PBS and transported to the NIRF system. The plaque was then stretched out and fixed on a silicon plate with 25G needles. A PBS NIRF image was generated from both the intraluminal and extraluminal side of the . . .
      13. URL :
        http://circ.ahajournals.org/cgi/content/extract/119/20/e534
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4644
      1. Author :
        David E Sosnovik, Matthias Nahrendorf and Ralph Weissleder
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Nature Reviews Cardiology
      6. Products :
      7. Volume :
        5
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        in vivo imaging; fluorescence imaging, molecular imaging, MRI, myocardium, SPECT; MMPSense
      12. Abstract :
        Molecular imaging agents can be targeted to a specific receptor or protein on the cardiomyocyte surface, or to enzymes released into the interstitial space, such as cathepsins, matrix metalloproteinases and myeloperoxidase. Molecular imaging of the myocardium, however, requires the imaging agent to be small, sensitive (nanomolar levels or better), and able to gain access to the interstitial space. Several novel agents that fulfill these criteria have been used for targeted molecular imaging applications in the myocardium. Magnetic resonance, fluorescence, and single-photon emission CT have been used to image the molecular signals generated by these agents. The use of targeted imaging agents in the myocardium has the potential to provide valuable insights into the pathophysiology of myocardial injury and to facilitate the development of novel therapeutic strategies.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597275/?tool=pubmed
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4650
Back to Search
Select All  |  Deselect All