1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

471–480 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Ignat M, Aprahamian M, Lindner V, Altmeyer A, Perretta S, Dallemagne B, Mutter D and Marescaux J
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Gastroenterology
      6. Products :
      7. Volume :
        137
      8. Issue :
        5
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        ProSense; AngioSense; AngioSpark; in vivo imaging; pancreatic cancer
      12. Abstract :
        BACKGROUND & AIMS: Surgical management of pancreatic cancer depends on tumor resectability and staging. This study evaluated a new in vivo technique, fiberoptic confocal fluorescence microscopy (FCFM), for detection and staging of pancreatic tumors in rats.

        METHODS: FCFM was used with a protease-activated fluorescent marker (ProSense; VisEn Medical Inc, Woburn, MA) for in vivo imaging of solid organs (1.8-microm resolution) in a rat model of pancreatic ductal adenocarcinoma. A preliminary study described the FCFM rendering of normal and pathologic tissues. Subsequently, 2 double-blind studies compared FCFM to standard histology in (1) detection of tumors in rat models of cancer and controls and (2) detection of nodal involvement (splenic, celiac, mesenteric, and colic) 4, 5, and 6 weeks after tumor induction vs controls.

        RESULTS: Tumor cells displayed a fluorescent ductal pattern compared with non-fluorescent normal pancreas or normal follicular pattern of lymph nodes (LNs). FCFM detected all the pancreatic tumors (1.7-mm mean diameter) and identified 23 LNs that contained metastases of 99 LNs examined. Standard histologic analyses resulted in 1 false-negative result in tumor detection and 2 false negatives in LN detection, whereas FCFM produced no false-negative results. Additional serial sectioning confirmed all tumors and 16 metastatic LNs; FCFM had a negative predictive value of 100% and a positive predictive value of 69.6%.

        CONCLUSIONS: Real-time “virtual biopsy” using FCFM detects tumors and LN metastases with 100% sensitivity and 92.2% specificity in rats, making it a reliable technique for detection and staging of pancreatic cancer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19632230
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4540
      1. Author :
        Hensley, H. H.; Roder, N. A.; O'Brien, S. W.; Bickel, L. E.; Xiao, F.; Litwin, S.; Connolly, D. C.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Neoplasia
      6. Products :
      7. Volume :
        14
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        ProSense, IntegriSense, MMPSense, Annexin-Vivo, Annexin vivo, IVIS, Animals; Antineoplastic Agents/administration & dosage/pharmacology; Carcinoma/*diagnosis/*metabolism/pathology; Cathepsins/metabolism; Cell Line, Tumor; Disease Progression; Female; Fluorescent Dyes/chemistry/metabolism; Integrin alphaVbeta3/metabolism; Integrins/genetics/*metabolism; Magnetic Resonance Imaging; Matrix Metalloproteinases/metabolism; Mice; Mice, Transgenic; *Molecular Imaging; Ovarian Neoplasms/*diagnosis/drug therapy/*metabolism; Peptide Hydrolases/*metabolism; Protein Binding; Tumor Burden/drug effects
      12. Abstract :
        Most patients with epithelial ovarian cancer (EOC) experience drug-resistant disease recurrence. Identification of new treatments is a high priority, and preclinical studies in mouse models of EOC may expedite this goal. We previously developed methods for magnetic resonance imaging (MRI) for tumor detection and quantification in a transgenic mouse model of EOC. The goal of this study was to determine whether three-dimensional (3D) fluorescence molecular tomography (FMT) and fluorescent molecular imaging probes could be effectively used for in vivo detection of ovarian tumors and response to therapy. Ovarian tumor-bearing TgMISIIR-TAg mice injected with fluorescent probes were subjected to MRI and FMT. Tumor-specific probe retention was identified in vivo by alignment of the 3D data sets, confirmed by ex vivo fluorescent imaging and correlated with histopathologic findings. Mice were treated with standard chemotherapy, and changes in fluorescent probe binding were detected by MRI and FMT. Ovarian tumors were detected using probes specific for cathepsin proteases, matrix metalloproteinases (MMPs), and integrin alpha(v)beta(3). Cathepsin and integrin alpha(v)beta(3) probe activation and retention correlated strongly with tumor volume. MMP probe activation was readily detected in tumors but correlated less strongly with tumor volume. Tumor regression associated with response to therapy was detected and quantified by serial MRI and FMT. These results demonstrate the feasibility and sensitivity of FMT for detection and quantification of tumor-associated biologic targets in ovarian tumors and support the translational utility of molecular imaging to assess functional response to therapy in mouse models of EOC.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22787427
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10425
      1. Author :
        David G Kirsch; Daniela M Dinulescu; John B Miller; Jan Grimm; Philip M Santiago1; Nathan P Young; G Petur Nielsen; Bradley J Quade; Christopher J Chaber; Christian P Schultz; Osamu Takeuchi; Roderick T Bronson; Denise Crowley; Stanley J Korsmeyer; Sam S Yoon; Francis J Hornicek; Ralph Weissleder; Tyler Jacks
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Nature Medicine
      6. Products :
      7. Volume :
        13
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        sarcoma; imaging; apoptosis; metatasis; FMT
      12. Abstract :
        Soft tissue sarcomas are mesenchymal tumors that are fatal in approximately one-third of patients. To explore mechanisms of sarcoma pathogenesis, we have generated a mouse model of soft tissue sarcoma. Intramuscular delivery of an adenovirus expressing Cre recombinase in mice with conditional mutations in Kras and Trp53 was sufficient to initiate high-grade sarcomas with myofibroblastic differentiation. Like human sarcomas, these tumors show a predilection for lung rather than lymph node metastasis. Using this model, we showed that a prototype handheld imaging device can identify residual tumor during intraoperative molecular imaging. Deletion of the Ink4a-Arf locus (Cdkn2a), but not Bak1 and Bax, could substitute for mutation of Trp53 in this model. Deletion of Bak1 and Bax, however, was able to substitute for mutation of Trp53 in the development of sinonasal adenocarcinoma. Therefore, the intrinsic pathway of apoptosis seems sufficient to mediate p53 tumor suppression in an epithelial cancer, but not in this model of soft tissue sarcoma.
      13. URL :
        http://www.nature.com/nm/journal/v13/n8/abs/nm1602.html
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4506
      1. Author :
        Bratlie, K. M.; Dang, T. T.; Lyle, S.; Nahrendorf, M.; Weissleder, R.; Langer, R.; Anderson, D. G.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        5
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Prosense, IVIS, Animals; Biocompatible Materials/*diagnostic use; Diagnostic Imaging/*methods; *Fluorescence; Macrophage Activation; Materials Testing/*methods; Mice; Models, Animal; Peptide Hydrolases/metabolism; Phagocytes
      12. Abstract :
        BACKGROUND: Many materials are unsuitable for medical use because of poor biocompatibility. Recently, advances in the high throughput synthesis of biomaterials has significantly increased the number of potential biomaterials, however current biocompatibility analysis methods are slow and require histological analysis. METHODOLOGY/PRINCIPAL FINDINGS: Here we develop rapid, non-invasive methods for in vivo quantification of the inflammatory response to implanted biomaterials. Materials were placed subcutaneously in an array format and monitored for host responses as per ISO 10993-6: 2001. Host cell activity in response to these materials was imaged kinetically, in vivo using fluorescent whole animal imaging. Data captured using whole animal imaging displayed similar temporal trends in cellular recruitment of phagocytes to the biomaterials compared to histological analysis. CONCLUSIONS/SIGNIFICANCE: Histological analysis similarity validates this technique as a novel, rapid approach for screening biocompatibility of implanted materials. Through this technique there exists the possibility to rapidly screen large libraries of polymers in vivo.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20386609
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10427
      1. Author :
        Liu, W. F.; Ma, M.; Bratlie, K. M.; Dang, T. T.; Langer, R.; Anderson, D. G.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Biomaterials
      6. Products :
      7. Volume :
        32
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        ProSense, IVIS, Animals; Biocompatible Materials/*adverse effects; Cells, Cultured; Free Radicals/metabolism; Immunohistochemistry; Male; Mice; Prostheses and Implants/*adverse effects; Reactive Oxygen Species/*metabolism
      12. Abstract :
        The non-specific host response to implanted biomaterials is often a key challenge of medical device design. To evaluate biocompatibility, measuring the release of reactive oxygen species (ROS) produced by inflammatory cells in response to biomaterial surfaces is a well-established method. However, the detection of ROS in response to materials implanted in vivo has not yet been demonstrated. Here, we develop a bioluminescence whole animal imaging approach to observe ROS released in response to subcutaneously-implanted materials in live animals. We compared the real-time generation of ROS in response to two representative materials, polystyrene and alginate, over the course of 28 days. High levels of ROS were observed near polystyrene, but not alginate implants, and persisted throughout the course of 28 days. Histological analysis revealed that high levels of ROS correlated not only with the presence of phagocytic cells at early timepoints, but also fibrosis at later timepoints, suggesting that ROS may be involved in both the acute and chronic phase of the foreign body response. These data are the first in vivo demonstration of ROS generation in response to implanted materials, and describe a novel technique to evaluate the host response.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21146868
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10428
      1. Author :
        Mieog, J. S.; Hutteman, M.; van der Vorst, J. R.; Kuppen, P. J.; Que, I.; Dijkstra, J.; Kaijzel, E. L.; Prins, F.; Lowik, C. W.; Smit, V. T.; van de Velde, C. J.; Vahrmeijer, A. L.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Breast Cancer Res Treat
      6. Products :
      7. Volume :
        128
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        ProSense, IVIS, Animals; Breast Neoplasms/pathology/*surgery; Cell Line, Tumor; Disease Models, Animal; Female; *Microscopy, Fluorescence; Rats; *Surgery, Computer-Assisted; Transplantation, Isogeneic; Xenograft Model Antitumor Assays
      12. Abstract :
        Tumor involvement of resection margins is found in a large proportion of patients who undergo breast-conserving surgery. Near-infrared (NIR) fluorescence imaging is an experimental technique to visualize cancer cells during surgery. To determine the accuracy of real-time NIR fluorescence imaging in obtaining tumor-free resection margins, a protease-activatable NIR fluorescence probe and an intraoperative camera system were used in the EMR86 orthotopic syngeneic breast cancer rat model. Influence of concentration, timing and number of tumor cells were tested in the MCR86 rat breast cancer cell line. These variables were significantly associated with NIR fluorescence probe activation. Dosing and tumor size were also significantly associated with fluorescence intensity in the EMR86 rat model, whereas time of imaging was not. Real-time NIR fluorescence guidance of tumor resection resulted in a complete resection of 17 out of 17 tumors with minimal excision of normal healthy tissue (mean minimum and a mean maximum tumor-free margin of 0.2 +/- 0.2 mm and 1.3 +/- 0.6 mm, respectively). Moreover, the technique enabled identification of remnant tumor tissue in the surgical cavity. Histological analysis revealed that the NIR fluorescence signal was highest at the invasive tumor border and in the stromal compartment of the tumor. In conclusion, NIR fluorescence detection of breast tumor margins was successful in a rat model. This study suggests that clinical introduction of intraoperative NIR fluorescence imaging has the potential to increase the number of complete tumor resections in breast cancer patients undergoing breast-conserving surgery.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20821347
      14. Call Number :
        PKI @ kd.modi @ 4
      15. Serial :
        10429
      1. Author :
        Mathew, B.; Lennon, F.E.; Siegler, J.; Mirzapoiazova, T.; Mambetsariev, N.; Sammani, S.; Gerhold, L.M.; Lariviere, P.J.; Chen, C.-T.; Garcia, J.G.N.; Salgia, R.; Moss, J.; Singleton, P.A.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Anesthesia and Analgesia
      6. Products :
      7. Volume :
        112
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Cancer; flank tumor; In vivo; MMPSense 750; ProSense 680; tomography; VisEn FMT
      12. Abstract :
        <AbstractText Label=“BACKGROUND” NlmCategory=“BACKGROUND”>The possibility that μ opioid agonists can influence cancer recurrence is a subject of recent interest. Epidemiologic studies suggested that there were differences in cancer recurrence in breast and prostate cancer contingent on anesthetic regimens. In this study, we identify a possible mechanism for these epidemiologic findings on the basis of μ opioid receptor (MOR) regulation of Lewis lung carcinoma (LLC) tumorigenicity in cell and animal models.</AbstractText> <AbstractText Label=“METHODS” NlmCategory=“METHODS”>We used human lung tissue and human non-small cell lung cancer (NSCLC) cell lines and evaluated MOR expression using immunoblot and immunohistochemical analysis. LLC cells were treated with the peripheral opioid antagonist methylnaltrexone (MNTX) or MOR shRNA and evaluated for proliferation, invasion, and soft agar colony formation in vitro and primary tumor growth and lung metastasis in C57BL/6 and MOR knockout mice using VisEn fluorescence mediated tomography imaging and immunohistochemical analysis.</AbstractText> <AbstractText Label=“RESULTS” NlmCategory=“RESULTS”>We provide several lines of evidence that the MOR may be a potential target for lung cancer, a disease with high mortality and few treatment options. We first observed that there is ~5- to 10-fold increase in MOR expression in lung samples from patients with NSCLC and in several human NSCLC cell lines. The MOR agonists morphine and [d-Ala(2), N-MePhe(4), Gly-ol]-enkephalin (DAMGO) increased in vitro LLC cell growth. Treatment with MNTX or silencing MOR expression inhibited LLC invasion and anchorage-independent growth by 50%-80%. Injection of MOR silenced LLC lead to a ~65% reduction in mouse lung metastasis. In addition, MOR knockout mice do not develop significant tumors when injected with LLC in comparison with wild-type controls. Finally, continuous infusion of the peripheral opioid antagonist MNTX attenuates primary LLC tumor growth and reduces lung metastasis.</AbstractText> <AbstractText Label=“CONCLUSIONS” NlmCategory=“CONCLUSIONS”>Taken together, our data suggest a possible direct effect of opiates on lung cancer progression, and provide a plausible explanation for the epidemiologic findings. Our observations further suggest a possible therapeutic role for opioid antagonists.</AbstractText>
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21156980
      14. Call Number :
        PKI @ user @ 8557
      15. Serial :
        4797
      1. Author :
        Goergen, C.J.; Azuma, J.; Barr, K.N.; Magdefessel, L.; Kallop, D.Y.; Gogineni, A.; Grewall, A.; Weimer, R.M.; Connolly, A.J.; Dalman, R.L.; Taylor, C.A.; Tsao, P.S.; Greve, J.M.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Arteriosclerosis, Thrombosis, and Vascular Biology
      6. Products :
      7. Volume :
        31
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Aaa; abdominal aortic aneurysm; FX Pro Kodak molecular Imaging System; ImageJ software; in vivo imaging; jugular vein injection; mice; MMPSense 680; ProSense 750; tail vein injection; thoracic aorta; vascular
      12. Abstract :
        <AbstractText Label=“OBJECTIVE” NlmCategory=“OBJECTIVE”>To quantitatively compare aortic curvature and motion with resulting aneurysm location, direction of expansion, and pathophysiological features in experimental abdominal aortic aneurysms (AAAs).</AbstractText> <AbstractText Label=“METHODS AND RESULTS” NlmCategory=“RESULTS”>MRI was performed at 4.7 T with the following parameters: (1) 3D acquisition for vessel geometry and (2) 2D cardiac-gated acquisition to quantify luminal motion. Male 24-week-old mice were imaged before and after AAA formation induced by angiotensin II (AngII)-filled osmotic pump implantation or infusion of elastase. AngII-induced AAAs formed near the location of maximum abdominal aortic curvature, and the leftward direction of expansion was correlated with the direction of suprarenal aortic motion. Elastase-induced AAAs formed in a region of low vessel curvature and had no repeatable direction of expansion. AngII significantly increased mean blood pressure (22.7 mm Hg, P<0.05), whereas both models showed a significant 2-fold decrease in aortic cyclic strain (P<0.05). Differences in patterns of elastin degradation and localization of fluorescent signal from protease-activated probes were also observed.</AbstractText> <AbstractText Label=“CONCLUSIONS” NlmCategory=“CONCLUSIONS”>The direction of AngII aneurysm expansion correlated with the direction of motion, medial elastin dissection, and adventitial remodeling. Anterior infrarenal aortic motion correlated with medial elastin degradation in elastase-induced aneurysms. Results from both models suggest a relationship between aneurysm pathological features and aortic geometry and motion.</AbstractText>
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21071686
      14. Call Number :
        PKI @ user @ 8450
      15. Serial :
        4803
Back to Search
Select All  |  Deselect All