1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

231–240 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Dernell, William S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        N/A
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        *Breast Cancer; *Chemotherapy; *Genes; *Luciferase; Anatomy and Physiology; Biochemistry; Bioware; Cells(Biology); Diseases; Drugs; Efficacy; Gel Polymers; Gels; Growth(Physiology); Humans; Image Processing; In Vitro Analysis.; In Vivo Analysis; Luciferase Genes; Medicine and Medical Research; Metastasis; Mouse Models; Paclitaxel Sensitivity; Poloxamer Polymers; Polymers; Preclinical Evaluations; surgery; Synergism; Toxicity; Tumor Cell Lines
      12. Abstract :
        This project evaluated paclitaxel chemotherapy delivery from a gel polymer system placed into a wound bed following conservative (marginal) surgical removal of human breast cancers grown in nude mice. This delivery method was shown to control local tumor disease as well as assist in control of systemic metastasis. We established 5 human breast cancer cell lines within our laboratory. We elected purchase and implement a unique (luciferase) imaging system which allows in vivo imaging of tumor growth and metastasis (and subsequently decrease animal use). Tumor cell lines were transfected with the luciferase gene. In vitro testing of cell lines established paclitaxel sensitivity and showed a synergistic effect of delivering paclitaxel by the poloxamer polymer, especially for the chemotherapy resistant cell line, MCF-7-ADR. We completed the simultaneous evaluation of local and systemic toxicity, local, regional and systemic distribution and local and systemic efficacy of locally delivered paclitaxel chemotherapy following tumor removal using the MCF-7-ADR cell line in nude mice. Intracavitary administration of taxol in poloxamer was well tolerated (locally and systemically) afld resulted in significantly improved control of local tumor regrowth and comparable control of metastasis following marginal tumor removal as compared to intravenous paclitaxel (parent drug) . Sustained drug levels (from polymer delivery) were seen in plasma and liver tissue at 60 days.
      13. URL :
        http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA437225
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8994
      1. Author :
        Huang, Yujie; Song, Nan; Ding, Yanping; Yuan, Shaopeng; Li, Xuhui; Cai, Hongchen; Shi, Hubing; Luo, Yongzhang
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Cancer research
      6. Products :
      7. Volume :
        69
      8. Issue :
        19
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Angiopoietin-2; Animals; Bioware; Breast Neoplasms; Capillary Permeability; Female; Gene Expression; Humans; Lung; Lung Neoplasms; Matrix Metalloproteinase 10; Matrix Metalloproteinase 3; MDA-MB-231-D3H1 cells; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Mice, Nude; RNA Interference; Up-Regulation
      12. Abstract :
        Before metastasis, certain organs have already been influenced by primary tumors. However, the exact alterations and regulatory mechanisms of the premetastatic organs remain poorly understood. Here, we report that, in the premetastatic stage, angiopoietin 2 (Angpt2), matrix metalloproteinase (MMP) 3, and MMP10 are up-regulated in the lung by primary B16/F10 tumor, which leads to the increased permeability of pulmonary vasculatures and extravasation of circulating tumor cells. Subsequent studies show that Angpt2, MMP3, and MMP10 have a synergistic effect on disrupting vascular integrity in both in vitro and in vivo models. Lentivirus-based in vivo RNA interference of Angpt2, MMP3, and MMP10 attenuates the pulmonary vascular permeability and suppresses the infiltration of myeloid cells in the premetastatic lung. Moreover, knocking down these factors significantly inhibits the spontaneous lung metastasis in the model by orthotopic implantation of MDA-MB-231-Luc-D3H1 cells in nude mice. Further investigations reveal that the malignancy of tumor cells is positively correlated with their capabilities to induce the expression of Angpt2, MMP3, and MMP10. Luciferase reporter assay and chromatin immunoprecipitation assay also suggest that transforming growth factor-beta1 and tumor necrosis factor-alpha signaling are involved in the regulation of these premetastatic factors. Our study shows that pulmonary vascular destabilization in the premetastatic phase promotes the extravasation of tumor cells and facilitates lung metastasis, which may provide potential targets for clinical prevention of metastasis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19773447
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8989
      1. Author :
        Jenkins, Darlene E; Hornig, Yvette S; Oei, Yoko; Dusich, Joan; Purchio, Tony
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        Breast cancer research: BCR
      6. Products :
      7. Volume :
        7
      8. Issue :
        4
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Breast Neoplasms; Disease Models, Animal; Female; Humans; Luciferases; Mammary Neoplasms, Animal; MDA-MB-231-D3H1 cells; Mice; Mice, Nude; Neoplasm Metastasis; Plasmids; Transplantation, Heterologous; Tumor Cells, Cultured
      12. Abstract :
        INTRODUCTION Our goal was to generate xenograft mouse models of human breast cancer based on luciferase-expressing MDA-MB-231 tumor cells that would provide rapid mammary tumor growth; produce metastasis to clinically relevant tissues such as lymph nodes, lung, and bone; and permit sensitive in vivo detection of both primary and secondary tumor sites by bioluminescent imaging. METHOD Two clonal cell sublines of human MDA-MB-231 cells that stably expressed firefly luciferase were isolated following transfection of the parental cells with luciferase cDNA. Each subline was passaged once or twice in vivo to enhance primary tumor growth and to increase metastasis. The resulting luciferase-expressing D3H1 and D3H2LN cells were analyzed for long-term bioluminescent stability, primary tumor growth, and distal metastasis to lymph nodes, lungs, bone and soft tissues by bioluminescent imaging. Cells were injected into the mammary fat pad of nude and nude-beige mice or were delivered systemically via intracardiac injection. Metastasis was also evaluated by ex vivo imaging and histologic analysis postmortem. RESULTS The D3H1 and D3H2LN cell lines exhibited long-term stable luciferase expression for up to 4-6 months of accumulative tumor growth time in vivo. Bioluminescent imaging quantified primary mammary fat pad tumor development and detected early spontaneous lymph node metastasis in vivo. Increased frequency of spontaneous lymph node metastasis was observed with D3H2LN tumors as compared with D3H1 tumors. With postmortem ex vivo imaging, we detected additional lung micrometastasis in mice with D3H2LN mammary tumors. Subsequent histologic evaluation of tissue sections from lymph nodes and lung lobes confirmed spontaneous tumor metastasis at these sites. Following intracardiac injection of the MDA-MB-231-luc tumor cells, early metastasis to skeletal tissues, lymph nodes, brain and various visceral organs was detected. Weekly in vivo imaging data permitted longitudinal analysis of metastasis at multiple sites simultaneously. Ex vivo imaging data from sampled tissues verified both skeletal and multiple soft tissue tumor metastasis. CONCLUSION This study characterized two new bioluminescent MDA-MB-231-luc human breast carcinoma cell lines with enhanced tumor growth and widespread metastasis in mice. Their application to current xenograft models of breast cancer offers rapid and highly sensitive detection options for preclinical assessment of anticancer therapies in vivo.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15987449
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8993
      1. Author :
        Neal, Robert E, 2nd; Singh, Ravi; Hatcher, Heather C; Kock, Nancy D; Torti, Suzy V; Davalos, Rafael V
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Breast cancer research and treatment
      6. Products :
      7. Volume :
        123
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Cell Line, Tumor; Electrochemotherapy; Electrodes; Female; Humans; Mammary Neoplasms, Experimental; MDA-MB-231-D3H1 cells; Mice; Mice, Nude; Needles; Xenograft Model Antitumor Assays
      12. Abstract :
        Irreversible electroporation (IRE) is a therapeutic technology for the ablation of soft tissues using electrodes to deliver intense but short electric pulses across a cell membrane, creating nanopores that lead to cell death. This phenomenon only affects the cell membrane, leaving the extracellular matrix and sensitive structures intact, making it a promising technique for the treatment many types of tumors. In this paper, we present the first in vivo study to achieve tumor regression using a translatable, clinically relevant single needle electrode for treatment administration. Numerical models of the electric field distribution for the protocol used suggest that a 1000 V/cm field threshold is sufficient to treat a tumor, and that the electric field distribution will slightly decrease if the same protocol were used on a tumor deep seated within a human breast. Tumor regression was observed in 5 out of 7 MDA-MB231 human mammary tumors orthotopically implanted in female Nu/Nu mice, with continued growth in controls.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20191380
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8988
      1. Author :
        Nguyen, Leslie; Zhong, Wei-Zhu; Painter, Cory L; Zhang, Cathy; Rahavendran, Sadayappan V; Shen, Zhongzhou
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Journal of pharmaceutical and biomedical analysis
      6. Products :
      7. Volume :
        53
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Chromatography, Liquid; Cyclin-Dependent Kinase 4; Drug Stability; Female; Humans; MDA-MB-231-D3H1 cells; Mice; Mice, SCID; Neoplasm Transplantation; Neoplasms, Experimental; Piperazines; Protein kinase inhibitors; Pyridines; Sensitivity and Specificity; Tandem Mass Spectrometry; Transplantation, Heterologous
      12. Abstract :
        Phase II attrition of clinical candidates in the drug development cycle is currently a major issue facing the pharmaceutical industry. To decrease phase II attrition, there is an increased emphasis on validation of mechanism of action, development of efficacy models and measurement of drug levels at the site of action. PD 0332991, a highly specific inhibitor of cyclin-dependent kinase 4 (CDK-4) is currently in clinical development for the treatment of solid tumor. A clinical presurgical study will be required to better understand how PD 0332991 affects signaling pathways and how the intratumoral concentration of PD 0332991 correlates with plasma PK parameters and molecular alterations in breast cancer tissues after PD 0332991 treatment. Before conducting such a clinical study, it is important to evaluate PD 0332991 levels in tumor tissue samples from a xenograft mouse model for the determination of drug exposure at the site of action. Therefore, the objectives of this study were (1) to develop and validate a sensitive LC-MS/MS method to quantify PD 0332991 in mouse tumor tissues from MDA-MB-231-Luc human breast tumor xenografts in SCID-beige mice; (2) to quantify PD 0332991 levels in mouse tumor tissues after oral administration of PD 0332991 at 10 and 100mg/kg using the validated LC-MS/MS method. Both liquid-liquid extraction (LLE) and supported liquid extraction (SLE) in a 96-well format were developed and evaluated to achieve optimal extraction recovery with minimal matrix effects. The newly developed SLE method is more efficient (speed and ease) and demonstrates comparable recovery (93.1-100% at three different concentrations) compared to the traditional LLE method. The validated LC-MS/MS for PD 032291 in mouse tumor tissue homogenate method exhibited a linear dynamic range of 0.1-100 ng/mL with inter-day accuracy and precision within 15%. The validated method was successfully applied to measure PD 0332991 levels in tumor tissues in MDA-MB-231-Luc human breast tumor xenografts in SCID beige mice. The mean tumor concentrations at 6h post-oral PD 0332991 administration at 10 and 100mg/kg were 1793 (+/-1008) and 25,163 (+/-3959) ng/g, respectively.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20236782
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8987
      1. Author :
        Shan, Liang; Wang, Songping; Korotcov, Alexandru; Sridhar, Rajagopalan; Wang, Paul C
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Ethnicity & disease
      6. Products :
      7. Volume :
        18
      8. Issue :
        2 Suppl 2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Breast Neoplasms; Disease Models, Animal; Humans; Luciferases; Luminescent Measurements; Lung Neoplasms; Mammary Neoplasms, Animal; MDA-MB-231-D3H1 cells; Mice; Mice, Nude; Tumor Cells, Cultured
      12. Abstract :
        INTRODUCTION Convenient animal models are needed to study the progression and treatment of human tumors in vivo. Luciferase-based bioluminescent imaging (BLI) enables researchers to monitor tumors noninvasively and is sensitive to subtle changes in tumors. METHODS Three human breast cancer models in nude mice were established by using luciferase-expressing MDA-MB-231-luc cells. They were subcutaneous xenografts (n = 8), mammary gland xenografts (n = 5), and lung metastases (n = 3). The tumors were imaged in live mice by using a highly sensitive BLI system. The relationship between the intensity of bioluminescence from the tumor was analyzed with respect to tumor volume. Bioluminescent signals from lung metastases were studied to determine the threshold of detectability. RESULTS Tumors growing in the mice's backs and mammary gland fat pads were imaged dynamically after administration of D-luciferin. The bioluminescent intensity from the tumors gradually increased and then decreased in a one-hour span. The time to reach maximum signal intensity differed significantly among tumors and was independent of tumor volume and unrelated to maximum signal intensity. A significant correlation was observed between tumor volume and maximum signal intensity in tumors from both sites. Lung metastatic lesions of .3-.5 mm in diameter were clearly detectable through the entire animal imaging process. CONCLUSION The animal models established with luciferase-expressing cancer cells in combination with BLI provide a system for rapid, noninvasive, and quantitative analysis of tumor biomass and metastasis. This biosystem simplifies in vivo monitoring of tumors and will be useful for noninvasive investigation of tumor growth and response to therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18646323
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8991
      1. Author :
        Shan, Liang; Wang, Songping; Sridhar, Rajagopalan; Bhujwalla, Zaver M; Wang, Paul C
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Molecular imaging
      6. Products :
      7. Volume :
        6
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Breast Neoplasms; Cell Line, Tumor; Fluorescence; Fluorescent Dyes; Humans; Liposomes; Magnetic Resonance Imaging; Magnetics; MDA-MB-231-D3H1 cells; Mice; Mice, Inbred Strains; Microscopy, Confocal; Molecular Probes; Optics and Photonics; Transferrin; Xenograft Model Antitumor Assays
      12. Abstract :
        A dual probe with fluorescent and magnetic reporter groups was constructed by linkage of the near-infrared (NIR) fluorescent transferrin conjugate (Tf(NIR)) on the surface of contrast agent-encapsulated cationic liposome (Lip-CA). This probe was used for magnetic resonance imaging (MRI) and optical imaging of MDA-MB-231-luc breast cancer cells grown as a monolayer in vitro and as solid tumor xenografts in nude mice. Confocal microscopy, optical imaging, and MRI showed a dramatic increase of in vitro cellular uptake of the fluorescent and magnetic reporter groups from the probe compared with the uptake of contrast agent or Lip-CA alone. Pretreatment with transferrin (Tf) blocked uptake of the probe reporters, indicating the importance and specificity of the Tf moiety for targeting. Intravenous administration of the dual probe to nude mice significantly enhanced the tumor contrast in MRI, and preferential accumulation of the fluorescent signal was clearly seen in NIR-based optical images. More interestingly, the contrast enhancement in MRI showed a heterogeneous pattern within tumors, which reflected the tumor's morphologic heterogeneity. These results indicate that the newly developed dual probe enhances the tumor image contrast and is superior to contrast agent alone for identifying the tumor pathologic features on the basis of MRI but also is suitable for NIR-based optical imaging.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17445503
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8992
      1. Author :
        Stan, Silvia D; Hahm, Eun-Ryeong; Warin, Renaud; Singh, Shivendra V
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Cancer research
      6. Products :
      7. Volume :
        68
      8. Issue :
        18
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Apoptosis Regulatory Proteins; Bioware; Breast Neoplasms; Cell Growth Processes; Cell Line, Tumor; Ergosterol; Female; Forkhead Transcription Factors; Humans; MDA-MB-231-D3H1 cells; Membrane Proteins; Mice; Mice, Nude; Proto-Oncogene Proteins; RNA, Small Interfering; Transfection; Withanolides; Xenograft Model Antitumor Assays
      12. Abstract :
        Withaferin A (WA) is derived from the medicinal plant Withania somnifera, which has been safely used for centuries in Indian Ayurvedic medicine for treatment of different ailments. We now show, for the first time, that WA exhibits significant activity against human breast cancer cells in culture and in vivo. The WA treatment decreased viability of MCF-7 (estrogen-responsive) and MDA-MB-231 (estrogen-independent) human breast cancer cells in a concentration-dependent manner. The WA-mediated suppression of breast cancer cell viability correlated with apoptosis induction characterized by DNA condensation, cytoplasmic histone-associated DNA fragmentation, and cleavage of poly-(ADP-ribose)-polymerase. On the other hand, a spontaneously immortalized normal mammary epithelial cell line (MCF-10A) was relatively more resistant to WA-induced apoptosis compared with breast cancer cells. The WA-mediated apoptosis was accompanied by induction of Bim-s and Bim-L in MCF-7 cells and induction of Bim-s and Bim-EL isoforms in MDA-MB-231 cells. The cytoplasmic histone-associated DNA fragmentation resulting from WA exposure was significantly attenuated by knockdown of protein levels of Bim and its transcriptional regulator FOXO3a in both cell lines. Moreover, FOXO3a knockdown conferred marked protection against WA-mediated induction of Bim-s expression. The growth of MDA-MB-231 cells implanted in female nude mice was significantly retarded by 5 weekly i.p. injections of 4 mg WA/kg body weight. The tumors from WA-treated mice exhibited reduced cell proliferation and increased apoptosis compared with tumors from control mice. These results point toward an important role of FOXO3a and Bim in regulation of WA-mediated apoptosis in human breast cancer cells.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18794155
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8990
      1. Author :
        Zhang, H; Fagan, D H; Zeng, X; Freeman, K T; Sachdev, D; Yee, D
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Oncogene
      6. Products :
      7. Volume :
        29
      8. Issue :
        17
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Cell Line, Tumor; Cell Proliferation; Female; Humans; Insulin; Lung Neoplasms; Lymphangiogenesis; MDA-MB-231-D3H1 cells; Mice; Neoplasm Metastasis; Neoplasms, Experimental; Neovascularization, Pathologic; Phosphorylation; Proto-Oncogene Proteins c-akt; Receptor, Insulin; RNA, Small Interfering; Vascular Endothelial Growth Factor A
      12. Abstract :
        Insulin receptor (IR) and the type I IGF receptor (IGF1R) are structurally and functionally related. The function of IGF1R in cancer has been well documented and anti-IGF1R strategies to treat cancer have shown initial positive results. However, the role of IR in tumor biology, independent of IGF1R, is less clear. To address this issue, short hairpin RNA (shRNA) was used to specifically downregulate IR in two cancer cell lines, LCC6 and T47D. Cells with reduced IR showed reduced insulin-stimulated Akt activation, without affecting IGF1R activation. Cells with reduced IR formed fewer colonies in anchorage-independent conditions. LCC6 IR shRNA xenograft tumors in mice had reduced growth, angiogenesis and lymphangiogensis when compared with LCC6 wild-type cells. Accordingly, LCC6 IR shRNA clones produced less hypoxia-inducible factor-1alpha, vascular endothelial growth factor (VEGF)-A and VEGF-D. Furthermore, LCC6 IR shRNA cells formed fewer pulmonary metastases when compared with LCC6 wild-type cells. Using in vivo luciferase imaging, we have shown that LCC6 IR shRNA cells have less seeding and colonization potential in the lung and liver of mice than LCC6 cells. In conclusion, downregulation of IR inhibited cancer cell proliferation, angiogenesis, lymphangiogenesis and metastasis. Our data argue that IR should also be targeted in cancer therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20154728
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8986
Back to Search
Select All  |  Deselect All