1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

251–260 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Edinger, M; Cao, Y-a; Hornig, Y S; Jenkins, D E; Verneris, M R; Bachmann, M H; Negrin, R S; Contag, C H
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2002
      5. Publication :
        European journal of cancer (Oxford, England: 1990)
      6. Products :
      7. Volume :
        38
      8. Issue :
        16
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Diagnostic Imaging; Forecasting; Luminescent Measurements; Mice; Models, Animal; Neoplasms; PC-3M-luc; Sensitivity and Specificity
      12. Abstract :
        Malignant disease is the final manifestation of complex molecular and cellular events leading to uncontrolled cellular proliferation and eventually tissue destruction and metastases. While the in vitro examination of cultured tumour cells permits the molecular dissection of early pathways in tumorigenesis on cellular and subcellular levels, only interrogation of these processes within the complexity of organ systems of the living animal can reveal the full range of pathophysiological changes that occur in neoplastic disease. Such analyses require technologies that facilitate the study of biological processes in vivo, and several approaches have been developed over the last few years. These strategies, in the nascent field of in vivo molecular and cellular imaging, combine molecular biology with imaging modalities as a means to real-time acquisition of functional information about disease processes in living systems. In this review, we will summarise recent developments in in vivo bioluminescence imaging (BLI) and discuss the potential of this imaging strategy for the future of cancer research.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/12387838
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8983
      1. Author :
        Figg, William D; Li, Haiqing; Sissung, Tristan; Retter, Avi; Wu, Shenhong; Gulley, James L; Arlen, Phil; Wright, John J; Parnes, Howard; Fedenko, Kathy; Latham, Lea; Steinberg, Seth M; Jones, Elizabeth; Chen, Clara; Dahut, William
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        BJU international
      6. Products :
      7. Volume :
        99
      8. Issue :
        5
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Aged; Androgens; Animals; Antineoplastic Combined Chemotherapy Protocols; Aryl Hydrocarbon Hydroxylases; Bioware; Cytochrome P-450 Enzyme System; Estramustine; Genotype; Humans; Male; Mice; Mice, Nude; Middle Aged; PC-3M-luc; Prostatic Neoplasms; Survival Analysis; Taxoids; Thalidomide; Treatment Outcome
      12. Abstract :
        OBJECTIVE To evaluate the combination of docetaxel plus estramustine (which prolongs survival in patients with androgen-independent prostate cancer, AIPC), and thalidomide (that also adds to docetaxel activity), both pre-clinically and clinically in AIPC. PATIENTS, MATERIALS AND METHODS In the pre-clinical evaluation we injected PC3 cells subcutaneously into severely combined immunodeficient mice and started treatment after the tumour volume reached 50 mm3. We also evaluated the combination using luciferase-labelled PC3M-luc-C6 cells in nude mice. We enrolled 20 patients with metastatic progressive AIPC into a phase II clinical trial to evaluate this combination. Docetaxel (30 mg/m2) was administered every week, for 3 of 4 weeks. The dose of thalidomide was 200 mg/day and estramustine was given three times a day at 1, 2, 3, 8, 9, 10, 15, 16 and 17 days. RESULTS In the mice, thalidomide with docetaxel plus estramustine reduced tumour volume by 88% at 17 days vs the control treatment (p=0.001). The combination of docetaxel, estramustine and thalidomide nearly eradicated the signal from the luciferase-expressing PC3M cells in the metastasis model. Clinically, the progression-free time was 7.2 months with this combination; 18 of 20 patients had a decline of half or more in prostate-specific antigen level and two of 10 patients with soft-tissue lesions had a partial response on computed tomography. There were 24 grade 3 and two grade 4 complications associated with this combination. There was a statistically significant association between overall survival and the CYP1B1*3 genotype (P=0.013). CONCLUSION Docetaxel-based chemotherapy is now regarded as a standard regimen for metastatic AIPC. The combination of estramustine, docetaxel and thalidomide is an advantageous treatment in pre-clinical models of prostate cancer and is a safe, tolerable and active regimen in patients with AIPC.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17437439
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8970
      1. Author :
        Giubellino, Alessio; Gao, Yang; Lee, Sunmin; Lee, Min-Jung; Vasselli, James R; Medepalli, Sampath; Trepel, Jane B; Burke, Terrence R, Jr; Bottaro, Donald P
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Cancer research
      6. Products :
      7. Volume :
        67
      8. Issue :
        13
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Cell Line, Tumor; Cell Movement; Cell Proliferation; Gene Expression Regulation, Neoplastic; GRB2 Adaptor Protein; Humans; Mice; Mice, SCID; Microscopy, Fluorescence; Neoplasm Metastasis; Neoplasm Transplantation; PC-3M-luc; Protein Binding; Protein Structure, Tertiary; Tetrazolium Salts; Thiazoles
      12. Abstract :
        Metastasis, the primary cause of death in most forms of cancer, is a multistep process whereby cells from the primary tumor spread systemically and colonize distant new sites. Blocking critical steps in this process could potentially inhibit tumor metastasis and dramatically improve cancer survival rates; however, our understanding of metastasis at the molecular level is still rudimentary. Growth factor receptor binding protein 2 (Grb2) is a widely expressed adapter protein with roles in epithelial cell growth and morphogenesis, as well as angiogenesis, making it a logical target for anticancer drug development. We have previously shown that a potent antagonist of Grb2 Src homology-2 domain-binding, C90, blocks growth factor-driven cell motility in vitro and angiogenesis in vivo. We now report that C90 inhibits metastasis in vivo in two aggressive tumor models, without affecting primary tumor growth rate. These results support the potential efficacy of this compound in reducing the metastatic spread of primary solid tumors and establish a critical role for Grb2 Src homology-2 domain-mediated interactions in this process.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17616655
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8969
      1. Author :
        Hanai, Koji; Takeshita, Fumitaka; Honma, Kimi; Nagahara, Shunji; Maeda, Miho; Minakuchi, Yoshiko; Sano, Akihiko; Ochiya, Takahiro
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2006
      5. Publication :
        Annals of the New York Academy of Sciences
      6. Products :
      7. Volume :
        1082
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Bone Neoplasms; Collagen; Dermatitis; Disease Models, Animal; Drug Carriers; Gene Therapy; Humans; Hypersensitivity; Mice; Mice, Nude; Nanoparticles; Neoplasm Metastasis; Oligonucleotides; PC-3M-luc; RNA, Small Interfering; Tissue Distribution
      12. Abstract :
        The goal of our research is to provide a practical platform for drug delivery in oligonucleotide therapy. We report here the efficacy of an atelocollagen-mediated oligonucleotide delivery system applied to systemic siRNA and antisense oligonucleotide treatments in animal disease models. Atelocollagen and oligonucleotides formed a complex of nanosized particles, which was highly stable against nucleases. The complex allowed oligonucleotides to be delivered efficiently into several organs and tissues via intravenous administration. In a tumor metastasis model, the complex successfully delivered siRNA to metastasized tumors in bone tissue and inhibited their growth. We also demonstrated that a single intravenous treatment of the antisense oligodeoxynucleotide complex suppressed ear dermatitis in a contact hypersensitivity model. These results indicate the strong potential of the atelocollagen-mediated drug delivery system for practical therapeutic technology.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17145919
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8976
      1. Author :
        Hickson, Jonathan
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Urologic oncology
      6. Products :
      7. Volume :
        27
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Biological Markers; Bioware; Diagnostic Imaging; Image Processing, Computer-Assisted; Luminescent Measurements; Luminescent Proteins; Molecular Probes; Optical Devices; Optical Phenomena; PC-3M-luc; Reproducibility of Results
      12. Abstract :
        There has recently been an explosion in the availability of new technologies to noninvasively detect biological processes in preclinical models. One such modality, optical imaging, comprises using bioluminescent and fluorescent reporters and probes to repetitively interrogate molecular events and monitor disease progression in animal models. This review includes an overview of optical imaging technologies (e.g., hardware, reporters, probes) available for small animal imaging and their application in monitoring disease progression, therapeutic efficacy, and molecular processes such as proliferation, apoptosis, and angiogenesis. Also discussed are some of the challenges associated with in vivo optical imaging and the necessary controls and biological correlates one must include in experimental design and interpretation for successful preclinical studies.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19414115
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8964
      1. Author :
        Hokaiwado, Naomi; Takeshita, Fumitaka; Naiki-Ito, Aya; Asamoto, Makoto; Ochiya, Takahiro; Shirai, Tomoyuki
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Carcinogenesis
      6. Products :
      7. Volume :
        29
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Androgens; Animals; Animals, Genetically Modified; Apoptosis; Bioware; Blotting, Western; Cell Line, Tumor; Cell Proliferation; Glutathione S-Transferase pi; Humans; In Situ Nick-End Labeling; Male; Neoplasm Transplantation; Oligonucleotide Array Sequence Analysis; PC-3M-luc; Prostatic Neoplasms; Rats; Reverse Transcriptase Polymerase Chain Reaction; RNA, Small Interfering
      12. Abstract :
        Prostate cancers generally acquire an androgen-independent growth capacity with progression, resulting in resistance to antiandrogen therapy. Therefore, identification of the genes regulated through this process may be important for understanding the mechanisms of prostate carcinogenesis. We here utilized androgen-dependent/independent transplantable tumors, newly established with the 'transgenic rat adenocarcinoma in prostate' (TRAP) model, to analyze their gene expression using microarrays. Among the overexpressed genes in androgen-independent prostate cancers compared with the androgen-dependent tumors, glutathione S-transferase pi (GST-pi) was included. In line with this, human prostate cancer cell lines PC3 and DU145 (androgen independent) had higher expression of GST-pi compared with LNCaP (androgen dependent) as determined by semiquantitative reverse transcription-polymerase chain reaction analysis. To investigate the roles of GST-pi expression in androgen-independent human prostate cancers, GST-pi was knocked down by a small interfering RNA (siRNA), resulting in significant decrease of the proliferation rate in the androgen-independent PC3 cell line. In vivo, administration of GST-pi siRNA-atelocollagen complex decreased GST-pi protein expression, resulting in enhanced numbers of TdT mediated dUTP-biotin nick-end labering (TUNEL)-positive apoptotic cells. These findings suggest that GST-pi might play important roles in proliferation of androgen-independent human prostate cancer cells.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18413363
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8967
      1. Author :
        Jenkins, Darlene E; Yu, Shang-Fan; Hornig, Yvette S; Purchio, Tony; Contag, Pamela R
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2003
      5. Publication :
        Clinical & experimental metastasis
      6. Products :
      7. Volume :
        20
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antineoplastic Agents; Bioware; Cell Line, Tumor; Disease Models, Animal; Heart Neoplasms; Humans; Injections, Subcutaneous; Luminescent Measurements; Lung Neoplasms; Lymphatic Metastasis; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Recurrence, Local; PC-3M-luc; Prostatic Neoplasms
      12. Abstract :
        We used the bioluminescent human prostate carcinoma cell line PC-3M-luc-C6 to non-invasively monitor in vivo growth and response of tumors and metastasis before, during and after treatments. Our goal was to determine the utility of a luciferase-based prostate cancer animal model to specifically assess tumor and metastatic recurrence in vivo following chemotherapy. Bioluminescent PC-3M-luc-C6 cells, constitutively expressing luciferase, were implanted into the prostate or under the skin of mice for primary tumor assessment. Cells were also injected into the left ventricle of the heart as an experimental metastasis model. Weekly serial in vivo images were taken of anesthetized mice that were untreated or treated with 5-fluorouracil or mitomycin C. Ex vivo imaging and/or histology was used to confirm and localize metastatic lesions in various tissues initially detected by images in vivo. Our in vivo data detected and quantified early inhibition of subcutaneous and orthotopic prostate tumors in mice as well as significant tumor regrowth post-treatment. Local and distal metastasis was observed within seven days following intracardiac injection of PC-3M-luc-C6 cells. Differential drug responses and metastatic tumor relapse patterns were distinguished over time by in vivo imaging depending on the metastatic site. The longitudinal evaluation of bioluminescent tumor and metastatic development within the same cohorts of animals permitted sensitive and quantitative assessment of both primary and metastatic prostate tumor response and recurrence in vivo.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/14713108
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8981
      1. Author :
        Korotcov, Alexandru; Shan, Liang; Meng, Huan; Wang, Tongxin; Sridhar, Rajagopalan; Zhao, Yuliang; Liang, Xing-Jie; Wang, Paul C
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Journal of nanoscience and nanotechnology
      6. Products :
      7. Volume :
        10
      8. Issue :
        11
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Contrast Media; Magnetic Resonance Imaging; Mice; Nanotechnology; PC-3M-luc
      12. Abstract :
        We have developed and tested a liposomal nanocomplex system, which contains Gd-DTPA as a payload and transferrin on the surface, as a tumor specific targeting MRI contrast agent for studying prostate cancer tumors in mice. In vivo, the probe significantly enhanced the MRI signal. The image contrast between the peripheral region of the tumor and the non-involved muscle was nearly 50% higher two hours after administration of the nanocomplex. The liposomal nanocomplex increased the amount of Gd accumulated in tumors by factor 2.8 compared to that accumulated by using Magnevist alone. Moreover, the heterogeneous MRI image features correlate well with the tumor pathology. The image enhancement patterns can be used for cancer prognosis and non-invasive monitoring of the response to therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21137979
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8963
      1. Author :
        Kuo, Chaincy; Coquoz, Olivier; Troy, Tamara L; Xu, Heng; Rice, Brad W
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Journal of biomedical optics
      6. Products :
      7. Volume :
        12
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Luminescent Proteins; Male; Mice; Microscopy, Fluorescence, Multiphoton; PC-3M-luc; Prostatic Neoplasms; Whole Body Imaging
      12. Abstract :
        A new method is described for obtaining a 3-D reconstruction of a bioluminescent light source distribution inside a living animal subject, from multispectral images of the surface light emission acquired on charge-coupled device (CCD) camera. The method uses the 3-D surface topography of the animal, which is obtained from a structured light illumination technique. The forward model of photon transport is based on the diffusion approximation in homogeneous tissue with a local planar boundary approximation for each mesh element, allowing rapid calculation of the forward Green's function kernel. Absorption and scattering properties of tissue are measured a priori as input to the algorithm. By using multispectral images, 3-D reconstructions of luminescent sources can be derived from images acquired from only a single view. As a demonstration, the reconstruction technique is applied to determine the location and brightness of a source embedded in a homogeneous phantom subject in the shape of a mouse. The technique is then evaluated with real mouse models in which calibrated sources are implanted at known locations within living tissue. Finally, reconstructions are demonstrated in a PC3M-luc (prostate tumor line) metastatic tumor model in nude mice.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17477722
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8968
      1. Author :
        Lyons, Scott K; Lim, Ed; Clermont, Anne O; Dusich, Joan; Zhu, Lingyun; Campbell, Kenneth D; Coffee, Richard J; Grass, David S; Hunter, John; Purchio, Tony; Jenkins, Darlene
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2006
      5. Publication :
        Cancer research
      6. Products :
      7. Volume :
        66
      8. Issue :
        9
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Androgens; Animals; Bioware; Cell Transformation, Neoplastic; Disease Models, Animal; Genes, Reporter; Humans; Image Processing, Computer-Assisted; In Situ Hybridization; Luciferases, Firefly; Luminescent Measurements; Male; Mice; Mice, Transgenic; PC-3M-luc; Promoter Regions, Genetic; Prostate; Prostate-Specific Antigen; Prostatic Neoplasms
      12. Abstract :
        Several transgenic mouse models of prostate cancer have been developed recently that are able to recapitulate many key biological features of the human condition. It would, therefore, be desirable to employ these models to test the efficacy of new therapeutics before clinical trial; however, the variable onset and non-visible nature of prostate tumor development limit their use for such applications. We now report the generation of a transgenic reporter mouse that should obviate these limitations by enabling noninvasive in vivo bioluminescence imaging of normal and spontaneously transformed prostate tissue in the mouse. We used an 11-kb fragment of the human prostate-specific antigen (PSA) promoter to achieve specific and robust expression of firefly luciferase in the prostate glands of transgenic mice. Ex vivo bioluminescence imaging and in situ hybridization analysis confirmed that luciferase expression was restricted to the epithelium in all four lobes of the prostate. We also show that PSA-Luc mice exhibit decreased but readily detectable levels of in vivo bioluminescence over extended time periods following androgen ablation. These results suggest that this reporter should enable in vivo imaging of both androgen-dependent and androgen-independent prostate tumor models. As proof-of-principle, we show that we could noninvasively image SV40 T antigen-induced prostate tumorigenesis in mice with PSA-Luc. Furthermore, we show that our noninvasive imaging strategy can be successfully used to image tumor response to androgen ablation in transgenic mice and, as a result, that we can rapidly identify individual animals capable of sustaining tumor growth in the absence of androgen.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/16651422
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8975
Back to Search
Select All  |  Deselect All